A digital filter library for JavaScript.
$ npm install fili
var Fili = require('fili');
var iirCalculator = new Fili.CalcCascades();
-
Copy
./dist/fili.min.js
into your working directory -
Load script in your index.html
<script src="js/fili.min.js"></script>
- Use
Fili
in your application
var iirCalculator = new Fili.CalcCascades();
// ...
IIR filters are composed of n Biquad filters. The Biquad filters need a and b coefficients to work. So, they have a backward and a forward path. Possible filters are:
-
lowpass
-
highpass
-
bandpass
-
bandstop
-
peak
-
lowshelf
-
highshelf
-
aweighting
Possible characteristics are:
-
bessel
-
butterworth
Note: for peak, lowshelf and highshelf a gain attribute must be defined when generating the coefficients. Gain can be positive or negative and represents the dB value for the peak or dip.
// Instance of a filter coefficient calculator
var iirCalculator = new Fili.CalcCascades();
// get available filters
var availableFilters = iirCalculator.available();
// calculate filter coefficients
var iirFilterCoeffs = iirCalculator.lowpass({
order: 3, // cascade 3 biquad filters (max: 12)
characteristic: 'butterworth',
Fs: 1000, // sampling frequency
Fc: 100, // cutoff frequency / center frequency for bandpass, bandstop, peak
BW: 1, // bandwidth only for bandstop and bandpass filters - optional
gain: 0, // gain for peak, lowshelf and highshelf
preGain: false // adds one constant multiplication for highpass and lowpass
// k = (1 + cos(omega)) * 0.5 / k = 1 with preGain == false
});
// create a filter instance from the calculated coeffs
var iirFilter = new Fili.IirFilter(iirFilterCoeffs);
IIR filters are composed of n Biquad filters. The Biquad filters need only a coefficients to work. So, they have a backward but no forward path. Possible filters are:
- lowpass
Possible characteristics are:
-
bessel
-
butterworth
-
allpass
-
tschebyscheff05
-
tschebyscheff1
-
tschebyscheff2
-
tschebyscheff3
Note: The number behind tschebyscheff defines the passband ripple.
// calculate filter coefficients
var iirFilterCoeffs = iirCalculator.lowpass({
order: 3, // cascade 3 biquad filters (max: 5)
characteristic: 'tschebyscheff3',
transform: 'matchedZ',
Fs: 1000, // sampling frequency
Fc: 100, // cutoff frequency / center frequency for bandpass, bandstop, peak
preGain: false // uses k when true for gain correction b[0] otherwise
});
FIR filter calculation is done with a windowed sinc function Possible filters are:
- lowpass
- highpass
- bandpass
- bandstop
// Instance of a filter coefficient calculator
var firCalculator = new Fili.FirCoeffs();
// calculate filter coefficients
var firFilterCoeffs = firCalculator.lowpass({
order: 100, // filter order
Fs: 1000, // sampling frequency
Fc: 100 // cutoff frequency
// forbandpass and bandstop F1 and F2 must be provided instead of Fc
});
// filter coefficients by Kaiser-Bessel window
var firFilterCoeffsK = firCalculator.kbFilter({
order: 101, // filter order (must be odd)
Fs: 1000, // sampling frequency
Fa: 50, // rise, 0 for lowpass
Fb: 100, // fall, Fs/2 for highpass
Att: 100 // attenuation in dB
});
// create a filter instance from the calculated coeffs
var firFilter = new Fili.FirFilter(firFilterCoeffs);
// run the filter with 10 samples from a ramp
// returns single value
for (var cnt = 0; cnt < 10; cnt++) {
console.log(filter.singleStep(cnt));
}
// run the filter from input array
// returns array
console.log(filter.multiStep([1,10,-5,3,1.112,17]));
// simulate the filter
// does not change the internal state
// returns array
console.log(filter.simulate([-3,-2,-1,5,6,33]));
// get the filter impact on magnitude, phase, unwrapped phase, phase delay and group delay
// returns array of n objects
// Fs = 1000 n = 100, so the array represents 0Hz, 10Hz, 20Hz....
// returns array of objects
// {dBmagnitude: -4, groupDelay: 2, magnitude: 0, phase: -7, phaseDelay: 12, unwrappedPhase: 7}
var response = filter.response(100);
// get the filter impact on magnitude, phase, unwrapped phase, phase delay and group delay
// for a defined frequency
// returns one object
var responsePoint = filter.responsePoint({
Fs: 1000, // sampling frequency
Fr: 123 // frequency of interest
});
// initialize filter for testing
// note: changes internal state of filter -> create a new filter from
// the calculated coefficients for evaluation
var filterTester = new Fili.FilterTester(testFilter);
// check if filter is stable for the specified input range
// returns true for stable filter
var stable = filterTester.directedRandomStability({
steps: 10000, // filter steps per test
tests: 100, // numbers of tests (random, ramp, impulses, steps)
offset: 5, // offset of input
pp: 10, // peak to peak of input
maxStable: 20, // values over this border will be considered as unstable
minStable: -10, // values under this border will be considered as unstable
setup: 1000 // steps until initial setup of filter is complete
});
An FFT is always useful to evaluate filter responses. The algorithm uses precalculated twiddle factors and a lookup table for sine and cosine values. It also reuses all calculation buffers and precalculated window functions. This minimizes garbage collection and improves calculation speed.
Generate a new FFT calculator:
// Fft radix must be 2^n
var fft = new Fili.Fft(8192);
Frequency<--->Time Domain:
var buffer = [];
for (var cnt = 0; cnt < 8192; cnt++) {
buffer.push(cnt);
}
// Supported window functions are
// none, hanning, hamming, rectangular
// tukery, cosine, lanczos,
// triangular, bartlett, gaussian,
// bartlettHanning, blackman, blackmanHarris,
// nuttall3, nuttall3a, nuttall3b,
// nuttall4, nuttall4a, nuttall4b, nuttall4c
// sft3f, sft4f, sft5f, sft3m, sft4m, sft5m
// nift, hpft, srft, hft70, hft95, hft90d
// hft116d, hft144d, hft196d, hft223d, hft248d
// get available window functions
var availableWindows = fft.windows();
// buffer.length must be greater or equal fft radix
var fftResult = fft.forward(buffer, 'hanning');
// fftResult = {re: [], im: []}. The array length equals the FFT radix
var magnitude = fft.magnitude(fftResult); // magnitude
var dB = fft.magToDb(magnitude); // magnitude in dB
var phase = fft.phase(fftResult); // phase
// Note: magnitude, dB and phase are arrays.
// The length equals the FFT radix.
// For exact phase evaluation, the phase must be unwrapped.
var originalBuffer = fft.inverse(fftResult.re, fftResult.im);
$ make test
- add travis
- add wavelet transform
- add Parks-McClellan FIR algorithm
- add iir filters other than biquad
- add stability evaluation for fix-point arithmetic
MIT