Skip to content

Latest commit

 

History

History

segmentation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

ADE20k Semantic segmentation with CSWin

Results and Models

Backbone Method pretrain Crop Size Lr Schd mIoU mIoU (ms+flip) #params FLOPs config model log
CSWin-T UPerNet ImageNet-1K 512x512 160K 49.3 50.7 60M 959G config model log
CSWin-S UperNet ImageNet-1K 512x512 160K 50.4 51.5 65M 1027G config model log
CSWin-B UperNet ImageNet-1K 512x512 160K 51.1 52.2 109M 1222G config model log

Getting started

  1. Install the Swin_Segmentation repository and some required packages.
git clone https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation
bash install_req.sh
  1. Move the CSWin configs and backbone file to the corresponding folder.
cp -r configs/cswin <MMSEG_PATH>/configs/
cp config/_base/upernet_cswin.py <MMSEG_PATH>/config/_base_/models
cp backbone/cswin_transformer.py <MMSEG_PATH>/mmseg/models/backbones/
cp mmcv_custom/checkpoint.py <MMSEG_PATH>/mmcv_custom/
  1. Install apex for mixed-precision training
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  1. Follow the guide in mmseg to prepare the ADE20k dataset.

Fine-tuning

Command format:

tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS> --options model.pretrained=<PRETRAIN_MODEL_PATH>

For example, using a CSWin-T backbone with UperNet:

bash tools/dist_train.sh \
    configs/cswin/upernet_cswin_tiny.py 8 \
    --options model.pretrained=<PRETRAIN_MODEL_PATH>

pretrained models could be found at main page.

More config files can be found at configs/cswin.

Evaluation

Command format:

tools/dist_test.sh  <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU
tools/dist_test.sh  <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU --aug-test

For example, evaluate a CSWin-T backbone with UperNet:

bash tools/dist_test.sh configs/cswin/upernet_cswin_tiny.py \ 
    <CHECKPOINT_PATH> 8 --eval mIoU

Acknowledgment

This code is built using the mmsegmentation library, Timm library, the Swin repository.