-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
test_sklearn.py
1227 lines (1046 loc) · 57.6 KB
/
test_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding: utf-8
import itertools
import math
import os
import joblib
import numpy as np
import pytest
from pkg_resources import parse_version
from sklearn import __version__ as sk_version
from sklearn.base import clone
from sklearn.datasets import load_svmlight_file, make_multilabel_classification
from sklearn.metrics import log_loss, mean_squared_error
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, train_test_split
from sklearn.multioutput import ClassifierChain, MultiOutputClassifier, MultiOutputRegressor, RegressorChain
from sklearn.utils.estimator_checks import check_parameters_default_constructible
from sklearn.utils.validation import check_is_fitted
import lightgbm as lgb
from .utils import load_boston, load_breast_cancer, load_digits, load_iris, load_linnerud, make_ranking
sk_version = parse_version(sk_version)
if sk_version < parse_version("0.23"):
import warnings
from sklearn.exceptions import SkipTestWarning
from sklearn.utils.estimator_checks import SkipTest, _yield_all_checks
else:
from sklearn.utils.estimator_checks import parametrize_with_checks
decreasing_generator = itertools.count(0, -1)
def custom_asymmetric_obj(y_true, y_pred):
residual = (y_true - y_pred).astype("float")
grad = np.where(residual < 0, -2 * 10.0 * residual, -2 * residual)
hess = np.where(residual < 0, 2 * 10.0, 2.0)
return grad, hess
def objective_ls(y_true, y_pred):
grad = (y_pred - y_true)
hess = np.ones(len(y_true))
return grad, hess
def logregobj(y_true, y_pred):
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
grad = y_pred - y_true
hess = y_pred * (1.0 - y_pred)
return grad, hess
def custom_dummy_obj(y_true, y_pred):
return np.ones(y_true.shape), np.ones(y_true.shape)
def constant_metric(y_true, y_pred):
return 'error', 0, False
def decreasing_metric(y_true, y_pred):
return ('decreasing_metric', next(decreasing_generator), False)
def mse(y_true, y_pred):
return 'custom MSE', mean_squared_error(y_true, y_pred), False
def binary_error(y_true, y_pred):
return np.mean((y_pred > 0.5) != y_true)
def multi_error(y_true, y_pred):
return np.mean(y_true != y_pred)
def multi_logloss(y_true, y_pred):
return np.mean([-math.log(y_pred[i][y]) for i, y in enumerate(y_true)])
def test_binary():
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = log_loss(y_test, gbm.predict_proba(X_test))
assert ret < 0.12
assert gbm.evals_result_['valid_0']['binary_logloss'][gbm.best_iteration_ - 1] == pytest.approx(ret)
def test_regression():
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = mean_squared_error(y_test, gbm.predict(X_test))
assert ret < 7
assert gbm.evals_result_['valid_0']['l2'][gbm.best_iteration_ - 1] == pytest.approx(ret)
def test_multiclass():
X, y = load_digits(n_class=10, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = multi_error(y_test, gbm.predict(X_test))
assert ret < 0.05
ret = multi_logloss(y_test, gbm.predict_proba(X_test))
assert ret < 0.16
assert gbm.evals_result_['valid_0']['multi_logloss'][gbm.best_iteration_ - 1] == pytest.approx(ret)
def test_lambdarank():
X_train, y_train = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train'))
X_test, y_test = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.test'))
q_train = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train.query'))
q_test = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.test.query'))
gbm = lgb.LGBMRanker(n_estimators=50)
gbm.fit(X_train, y_train, group=q_train, eval_set=[(X_test, y_test)],
eval_group=[q_test], eval_at=[1, 3], early_stopping_rounds=10, verbose=False,
callbacks=[lgb.reset_parameter(learning_rate=lambda x: max(0.01, 0.1 - 0.01 * x))])
assert gbm.best_iteration_ <= 24
assert gbm.best_score_['valid_0']['ndcg@1'] > 0.5674
assert gbm.best_score_['valid_0']['ndcg@3'] > 0.578
def test_xendcg():
dir_path = os.path.dirname(os.path.realpath(__file__))
X_train, y_train = load_svmlight_file(os.path.join(dir_path, '../../examples/xendcg/rank.train'))
X_test, y_test = load_svmlight_file(os.path.join(dir_path, '../../examples/xendcg/rank.test'))
q_train = np.loadtxt(os.path.join(dir_path, '../../examples/xendcg/rank.train.query'))
q_test = np.loadtxt(os.path.join(dir_path, '../../examples/xendcg/rank.test.query'))
gbm = lgb.LGBMRanker(n_estimators=50, objective='rank_xendcg', random_state=5, n_jobs=1)
gbm.fit(X_train, y_train, group=q_train, eval_set=[(X_test, y_test)],
eval_group=[q_test], eval_at=[1, 3], early_stopping_rounds=10, verbose=False,
eval_metric='ndcg',
callbacks=[lgb.reset_parameter(learning_rate=lambda x: max(0.01, 0.1 - 0.01 * x))])
assert gbm.best_iteration_ <= 24
assert gbm.best_score_['valid_0']['ndcg@1'] > 0.6211
assert gbm.best_score_['valid_0']['ndcg@3'] > 0.6253
def test_regression_with_custom_objective():
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=50, silent=True, objective=objective_ls)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
ret = mean_squared_error(y_test, gbm.predict(X_test))
assert ret < 7.0
assert gbm.evals_result_['valid_0']['l2'][gbm.best_iteration_ - 1] == pytest.approx(ret)
def test_binary_classification_with_custom_objective():
X, y = load_digits(n_class=2, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMClassifier(n_estimators=50, silent=True, objective=logregobj)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5, verbose=False)
# prediction result is actually not transformed (is raw) due to custom objective
y_pred_raw = gbm.predict_proba(X_test)
assert not np.all(y_pred_raw >= 0)
y_pred = 1.0 / (1.0 + np.exp(-y_pred_raw))
ret = binary_error(y_test, y_pred)
assert ret < 0.05
def test_dart():
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(boosting_type='dart', n_estimators=50)
gbm.fit(X_train, y_train)
score = gbm.score(X_test, y_test)
assert score >= 0.8
assert score <= 1.
# sklearn <0.23 does not have a stacking classifier and n_features_in_ property
@pytest.mark.skipif(sk_version < parse_version("0.23"), reason='scikit-learn version is less than 0.23')
def test_stacking_classifier():
from sklearn.ensemble import StackingClassifier
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
classifiers = [('gbm1', lgb.LGBMClassifier(n_estimators=3)),
('gbm2', lgb.LGBMClassifier(n_estimators=3))]
clf = StackingClassifier(estimators=classifiers,
final_estimator=lgb.LGBMClassifier(n_estimators=3),
passthrough=True)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
assert score >= 0.8
assert score <= 1.
assert clf.n_features_in_ == 4 # number of input features
assert len(clf.named_estimators_['gbm1'].feature_importances_) == 4
assert clf.named_estimators_['gbm1'].n_features_in_ == clf.named_estimators_['gbm2'].n_features_in_
assert clf.final_estimator_.n_features_in_ == 10 # number of concatenated features
assert len(clf.final_estimator_.feature_importances_) == 10
assert all(clf.named_estimators_['gbm1'].classes_ == clf.named_estimators_['gbm2'].classes_)
assert all(clf.classes_ == clf.named_estimators_['gbm1'].classes_)
# sklearn <0.23 does not have a stacking regressor and n_features_in_ property
@pytest.mark.skipif(sk_version < parse_version('0.23'), reason='scikit-learn version is less than 0.23')
def test_stacking_regressor():
from sklearn.ensemble import StackingRegressor
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
regressors = [('gbm1', lgb.LGBMRegressor(n_estimators=3)),
('gbm2', lgb.LGBMRegressor(n_estimators=3))]
reg = StackingRegressor(estimators=regressors,
final_estimator=lgb.LGBMRegressor(n_estimators=3),
passthrough=True)
reg.fit(X_train, y_train)
score = reg.score(X_test, y_test)
assert score >= 0.2
assert score <= 1.
assert reg.n_features_in_ == 13 # number of input features
assert len(reg.named_estimators_['gbm1'].feature_importances_) == 13
assert reg.named_estimators_['gbm1'].n_features_in_ == reg.named_estimators_['gbm2'].n_features_in_
assert reg.final_estimator_.n_features_in_ == 15 # number of concatenated features
assert len(reg.final_estimator_.feature_importances_) == 15
def test_grid_search():
X, y = load_iris(return_X_y=True)
y = y.astype(str) # utilize label encoder at it's max power
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1,
random_state=42)
params = dict(subsample=0.8,
subsample_freq=1)
grid_params = dict(boosting_type=['rf', 'gbdt'],
n_estimators=[4, 6],
reg_alpha=[0.01, 0.005])
fit_params = dict(verbose=False,
eval_set=[(X_val, y_val)],
eval_metric=constant_metric,
early_stopping_rounds=2)
grid = GridSearchCV(estimator=lgb.LGBMClassifier(**params), param_grid=grid_params,
cv=2)
grid.fit(X_train, y_train, **fit_params)
score = grid.score(X_test, y_test) # utilizes GridSearchCV default refit=True
assert grid.best_params_['boosting_type'] in ['rf', 'gbdt']
assert grid.best_params_['n_estimators'] in [4, 6]
assert grid.best_params_['reg_alpha'] in [0.01, 0.005]
assert grid.best_score_ <= 1.
assert grid.best_estimator_.best_iteration_ == 1
assert grid.best_estimator_.best_score_['valid_0']['multi_logloss'] < 0.25
assert grid.best_estimator_.best_score_['valid_0']['error'] == 0
assert score >= 0.2
assert score <= 1.
def test_random_search():
X, y = load_iris(return_X_y=True)
y = y.astype(str) # utilize label encoder at it's max power
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1,
random_state=42)
n_iter = 3 # Number of samples
params = dict(subsample=0.8,
subsample_freq=1)
param_dist = dict(boosting_type=['rf', 'gbdt'],
n_estimators=[np.random.randint(low=3, high=10) for i in range(n_iter)],
reg_alpha=[np.random.uniform(low=0.01, high=0.06) for i in range(n_iter)])
fit_params = dict(verbose=False,
eval_set=[(X_val, y_val)],
eval_metric=constant_metric,
early_stopping_rounds=2)
rand = RandomizedSearchCV(estimator=lgb.LGBMClassifier(**params),
param_distributions=param_dist, cv=2,
n_iter=n_iter, random_state=42)
rand.fit(X_train, y_train, **fit_params)
score = rand.score(X_test, y_test) # utilizes RandomizedSearchCV default refit=True
assert rand.best_params_['boosting_type'] in ['rf', 'gbdt']
assert rand.best_params_['n_estimators'] in list(range(3, 10))
assert rand.best_params_['reg_alpha'] >= 0.01 # Left-closed boundary point
assert rand.best_params_['reg_alpha'] <= 0.06 # Right-closed boundary point
assert rand.best_score_ <= 1.
assert rand.best_estimator_.best_score_['valid_0']['multi_logloss'] < 0.25
assert rand.best_estimator_.best_score_['valid_0']['error'] == 0
assert score >= 0.2
assert score <= 1.
# sklearn < 0.22 does not have the post fit attribute: classes_
@pytest.mark.skipif(sk_version < parse_version('0.22'), reason='scikit-learn version is less than 0.22')
def test_multioutput_classifier():
n_outputs = 3
X, y = make_multilabel_classification(n_samples=100, n_features=20,
n_classes=n_outputs, random_state=0)
y = y.astype(str) # utilize label encoder at it's max power
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=42)
clf = MultiOutputClassifier(estimator=lgb.LGBMClassifier(n_estimators=10))
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
assert score >= 0.2
assert score <= 1.
np.testing.assert_array_equal(np.tile(np.unique(y_train), n_outputs),
np.concatenate(clf.classes_))
for classifier in clf.estimators_:
assert isinstance(classifier, lgb.LGBMClassifier)
assert isinstance(classifier.booster_, lgb.Booster)
# sklearn < 0.23 does not have as_frame parameter
@pytest.mark.skipif(sk_version < parse_version('0.23'), reason='scikit-learn version is less than 0.23')
def test_multioutput_regressor():
bunch = load_linnerud(as_frame=True) # returns a Bunch instance
X, y = bunch['data'], bunch['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=42)
reg = MultiOutputRegressor(estimator=lgb.LGBMRegressor(n_estimators=10))
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
_, score, _ = mse(y_test, y_pred)
assert score >= 0.2
assert score <= 120.
for regressor in reg.estimators_:
assert isinstance(regressor, lgb.LGBMRegressor)
assert isinstance(regressor.booster_, lgb.Booster)
# sklearn < 0.22 does not have the post fit attribute: classes_
@pytest.mark.skipif(sk_version < parse_version('0.22'), reason='scikit-learn version is less than 0.22')
def test_classifier_chain():
n_outputs = 3
X, y = make_multilabel_classification(n_samples=100, n_features=20,
n_classes=n_outputs, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=42)
order = [2, 0, 1]
clf = ClassifierChain(base_estimator=lgb.LGBMClassifier(n_estimators=10),
order=order, random_state=42)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
assert score >= 0.2
assert score <= 1.
np.testing.assert_array_equal(np.tile(np.unique(y_train), n_outputs),
np.concatenate(clf.classes_))
assert order == clf.order_
for classifier in clf.estimators_:
assert isinstance(classifier, lgb.LGBMClassifier)
assert isinstance(classifier.booster_, lgb.Booster)
# sklearn < 0.23 does not have as_frame parameter
@pytest.mark.skipif(sk_version < parse_version('0.23'), reason='scikit-learn version is less than 0.23')
def test_regressor_chain():
bunch = load_linnerud(as_frame=True) # returns a Bunch instance
X, y = bunch['data'], bunch['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
order = [2, 0, 1]
reg = RegressorChain(base_estimator=lgb.LGBMRegressor(n_estimators=10), order=order,
random_state=42)
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
_, score, _ = mse(y_test, y_pred)
assert score >= 0.2
assert score <= 120.
assert order == reg.order_
for regressor in reg.estimators_:
assert isinstance(regressor, lgb.LGBMRegressor)
assert isinstance(regressor.booster_, lgb.Booster)
def test_clone_and_property():
X, y = load_boston(return_X_y=True)
gbm = lgb.LGBMRegressor(n_estimators=10, silent=True)
gbm.fit(X, y, verbose=False)
gbm_clone = clone(gbm)
assert isinstance(gbm.booster_, lgb.Booster)
assert isinstance(gbm.feature_importances_, np.ndarray)
X, y = load_digits(n_class=2, return_X_y=True)
clf = lgb.LGBMClassifier(n_estimators=10, silent=True)
clf.fit(X, y, verbose=False)
assert sorted(clf.classes_) == [0, 1]
assert clf.n_classes_ == 2
assert isinstance(clf.booster_, lgb.Booster)
assert isinstance(clf.feature_importances_, np.ndarray)
def test_joblib():
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=10, objective=custom_asymmetric_obj,
silent=True, importance_type='split')
gbm.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric=mse, early_stopping_rounds=5, verbose=False,
callbacks=[lgb.reset_parameter(learning_rate=list(np.arange(1, 0, -0.1)))])
joblib.dump(gbm, 'lgb.pkl') # test model with custom functions
gbm_pickle = joblib.load('lgb.pkl')
assert isinstance(gbm_pickle.booster_, lgb.Booster)
assert gbm.get_params() == gbm_pickle.get_params()
np.testing.assert_array_equal(gbm.feature_importances_, gbm_pickle.feature_importances_)
assert gbm_pickle.learning_rate == pytest.approx(0.1)
assert callable(gbm_pickle.objective)
for eval_set in gbm.evals_result_:
for metric in gbm.evals_result_[eval_set]:
np.testing.assert_allclose(gbm.evals_result_[eval_set][metric],
gbm_pickle.evals_result_[eval_set][metric])
pred_origin = gbm.predict(X_test)
pred_pickle = gbm_pickle.predict(X_test)
np.testing.assert_allclose(pred_origin, pred_pickle)
def test_random_state_object():
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
state1 = np.random.RandomState(123)
state2 = np.random.RandomState(123)
clf1 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state1)
clf2 = lgb.LGBMClassifier(n_estimators=10, subsample=0.5, subsample_freq=1, random_state=state2)
# Test if random_state is properly stored
assert clf1.random_state is state1
assert clf2.random_state is state2
# Test if two random states produce identical models
clf1.fit(X_train, y_train)
clf2.fit(X_train, y_train)
y_pred1 = clf1.predict(X_test, raw_score=True)
y_pred2 = clf2.predict(X_test, raw_score=True)
np.testing.assert_allclose(y_pred1, y_pred2)
np.testing.assert_array_equal(clf1.feature_importances_, clf2.feature_importances_)
df1 = clf1.booster_.model_to_string(num_iteration=0)
df2 = clf2.booster_.model_to_string(num_iteration=0)
assert df1 == df2
# Test if subsequent fits sample from random_state object and produce different models
clf1.fit(X_train, y_train)
y_pred1_refit = clf1.predict(X_test, raw_score=True)
df3 = clf1.booster_.model_to_string(num_iteration=0)
assert clf1.random_state is state1
assert clf2.random_state is state2
with pytest.raises(AssertionError):
np.testing.assert_allclose(y_pred1, y_pred1_refit)
assert df1 != df3
def test_feature_importances_single_leaf():
data = load_iris(return_X_y=False)
clf = lgb.LGBMClassifier(n_estimators=10)
clf.fit(data.data, data.target)
importances = clf.feature_importances_
assert len(importances) == 4
def test_feature_importances_type():
data = load_iris(return_X_y=False)
clf = lgb.LGBMClassifier(n_estimators=10)
clf.fit(data.data, data.target)
clf.set_params(importance_type='split')
importances_split = clf.feature_importances_
clf.set_params(importance_type='gain')
importances_gain = clf.feature_importances_
# Test that the largest element is NOT the same, the smallest can be the same, i.e. zero
importance_split_top1 = sorted(importances_split, reverse=True)[0]
importance_gain_top1 = sorted(importances_gain, reverse=True)[0]
assert importance_split_top1 != importance_gain_top1
def test_pandas_categorical():
pd = pytest.importorskip("pandas")
np.random.seed(42) # sometimes there is no difference how cols are treated (cat or not cat)
X = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'c', 'd'] * 75), # str
"B": np.random.permutation([1, 2, 3] * 100), # int
"C": np.random.permutation([0.1, 0.2, -0.1, -0.1, 0.2] * 60), # float
"D": np.random.permutation([True, False] * 150), # bool
"E": pd.Categorical(np.random.permutation(['z', 'y', 'x', 'w', 'v'] * 60),
ordered=True)}) # str and ordered categorical
y = np.random.permutation([0, 1] * 150)
X_test = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'e'] * 20), # unseen category
"B": np.random.permutation([1, 3] * 30),
"C": np.random.permutation([0.1, -0.1, 0.2, 0.2] * 15),
"D": np.random.permutation([True, False] * 30),
"E": pd.Categorical(np.random.permutation(['z', 'y'] * 30),
ordered=True)})
np.random.seed() # reset seed
cat_cols_actual = ["A", "B", "C", "D"]
cat_cols_to_store = cat_cols_actual + ["E"]
X[cat_cols_actual] = X[cat_cols_actual].astype('category')
X_test[cat_cols_actual] = X_test[cat_cols_actual].astype('category')
cat_values = [X[col].cat.categories.tolist() for col in cat_cols_to_store]
gbm0 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y)
pred0 = gbm0.predict(X_test, raw_score=True)
pred_prob = gbm0.predict_proba(X_test)[:, 1]
gbm1 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, pd.Series(y), categorical_feature=[0])
pred1 = gbm1.predict(X_test, raw_score=True)
gbm2 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A'])
pred2 = gbm2.predict(X_test, raw_score=True)
gbm3 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A', 'B', 'C', 'D'])
pred3 = gbm3.predict(X_test, raw_score=True)
gbm3.booster_.save_model('categorical.model')
gbm4 = lgb.Booster(model_file='categorical.model')
pred4 = gbm4.predict(X_test)
gbm5 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=['A', 'B', 'C', 'D', 'E'])
pred5 = gbm5.predict(X_test, raw_score=True)
gbm6 = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y, categorical_feature=[])
pred6 = gbm6.predict(X_test, raw_score=True)
with pytest.raises(AssertionError):
np.testing.assert_allclose(pred0, pred1)
with pytest.raises(AssertionError):
np.testing.assert_allclose(pred0, pred2)
np.testing.assert_allclose(pred1, pred2)
np.testing.assert_allclose(pred0, pred3)
np.testing.assert_allclose(pred_prob, pred4)
with pytest.raises(AssertionError):
np.testing.assert_allclose(pred0, pred5) # ordered cat features aren't treated as cat features by default
with pytest.raises(AssertionError):
np.testing.assert_allclose(pred0, pred6)
assert gbm0.booster_.pandas_categorical == cat_values
assert gbm1.booster_.pandas_categorical == cat_values
assert gbm2.booster_.pandas_categorical == cat_values
assert gbm3.booster_.pandas_categorical == cat_values
assert gbm4.pandas_categorical == cat_values
assert gbm5.booster_.pandas_categorical == cat_values
assert gbm6.booster_.pandas_categorical == cat_values
def test_pandas_sparse():
pd = pytest.importorskip("pandas")
try:
from pandas.arrays import SparseArray
except ImportError: # support old versions
from pandas import SparseArray
X = pd.DataFrame({"A": SparseArray(np.random.permutation([0, 1, 2] * 100)),
"B": SparseArray(np.random.permutation([0.0, 0.1, 0.2, -0.1, 0.2] * 60)),
"C": SparseArray(np.random.permutation([True, False] * 150))})
y = pd.Series(SparseArray(np.random.permutation([0, 1] * 150)))
X_test = pd.DataFrame({"A": SparseArray(np.random.permutation([0, 2] * 30)),
"B": SparseArray(np.random.permutation([0.0, 0.1, 0.2, -0.1] * 15)),
"C": SparseArray(np.random.permutation([True, False] * 30))})
if pd.__version__ >= '0.24.0':
for dtype in pd.concat([X.dtypes, X_test.dtypes, pd.Series(y.dtypes)]):
assert pd.api.types.is_sparse(dtype)
gbm = lgb.sklearn.LGBMClassifier(n_estimators=10).fit(X, y)
pred_sparse = gbm.predict(X_test, raw_score=True)
if hasattr(X_test, 'sparse'):
pred_dense = gbm.predict(X_test.sparse.to_dense(), raw_score=True)
else:
pred_dense = gbm.predict(X_test.to_dense(), raw_score=True)
np.testing.assert_allclose(pred_sparse, pred_dense)
def test_predict():
# With default params
iris = load_iris(return_X_y=False)
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
test_size=0.2, random_state=42)
gbm = lgb.train({'objective': 'multiclass',
'num_class': 3,
'verbose': -1},
lgb.Dataset(X_train, y_train))
clf = lgb.LGBMClassifier(verbose=-1).fit(X_train, y_train)
# Tests same probabilities
res_engine = gbm.predict(X_test)
res_sklearn = clf.predict_proba(X_test)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same predictions
res_engine = np.argmax(gbm.predict(X_test), axis=1)
res_sklearn = clf.predict(X_test)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same raw scores
res_engine = gbm.predict(X_test, raw_score=True)
res_sklearn = clf.predict(X_test, raw_score=True)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same leaf indices
res_engine = gbm.predict(X_test, pred_leaf=True)
res_sklearn = clf.predict(X_test, pred_leaf=True)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same feature contributions
res_engine = gbm.predict(X_test, pred_contrib=True)
res_sklearn = clf.predict(X_test, pred_contrib=True)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests other parameters for the prediction works
res_engine = gbm.predict(X_test)
res_sklearn_params = clf.predict_proba(X_test,
pred_early_stop=True,
pred_early_stop_margin=1.0)
with pytest.raises(AssertionError):
np.testing.assert_allclose(res_engine, res_sklearn_params)
# Tests start_iteration
# Tests same probabilities, starting from iteration 10
res_engine = gbm.predict(X_test, start_iteration=10)
res_sklearn = clf.predict_proba(X_test, start_iteration=10)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same predictions, starting from iteration 10
res_engine = np.argmax(gbm.predict(X_test, start_iteration=10), axis=1)
res_sklearn = clf.predict(X_test, start_iteration=10)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same raw scores, starting from iteration 10
res_engine = gbm.predict(X_test, raw_score=True, start_iteration=10)
res_sklearn = clf.predict(X_test, raw_score=True, start_iteration=10)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests same leaf indices, starting from iteration 10
res_engine = gbm.predict(X_test, pred_leaf=True, start_iteration=10)
res_sklearn = clf.predict(X_test, pred_leaf=True, start_iteration=10)
np.testing.assert_equal(res_engine, res_sklearn)
# Tests same feature contributions, starting from iteration 10
res_engine = gbm.predict(X_test, pred_contrib=True, start_iteration=10)
res_sklearn = clf.predict(X_test, pred_contrib=True, start_iteration=10)
np.testing.assert_allclose(res_engine, res_sklearn)
# Tests other parameters for the prediction works, starting from iteration 10
res_engine = gbm.predict(X_test, start_iteration=10)
res_sklearn_params = clf.predict_proba(X_test,
pred_early_stop=True,
pred_early_stop_margin=1.0, start_iteration=10)
with pytest.raises(AssertionError):
np.testing.assert_allclose(res_engine, res_sklearn_params)
def test_evaluate_train_set():
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
gbm = lgb.LGBMRegressor(n_estimators=10, silent=True)
gbm.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=False)
assert len(gbm.evals_result_) == 2
assert 'training' in gbm.evals_result_
assert len(gbm.evals_result_['training']) == 1
assert 'l2' in gbm.evals_result_['training']
assert 'valid_1' in gbm.evals_result_
assert len(gbm.evals_result_['valid_1']) == 1
assert 'l2' in gbm.evals_result_['valid_1']
def test_metrics():
X, y = load_boston(return_X_y=True)
params = {'n_estimators': 2, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# no custom objective, no custom metric
# default metric
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'l2' in gbm.evals_result_['training']
# non-default metric
gbm = lgb.LGBMRegressor(metric='mape', **params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'mape' in gbm.evals_result_['training']
# no metric
gbm = lgb.LGBMRegressor(metric='None', **params).fit(**params_fit)
assert gbm.evals_result_ is None
# non-default metric in eval_metric
gbm = lgb.LGBMRegressor(**params).fit(eval_metric='mape', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default metric with non-default metric in eval_metric
gbm = lgb.LGBMRegressor(metric='gamma', **params).fit(eval_metric='mape', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'gamma' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default metric with multiple metrics in eval_metric
gbm = lgb.LGBMRegressor(metric='gamma',
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'gamma' in gbm.evals_result_['training']
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default metric with multiple metrics in eval_metric for LGBMClassifier
X_classification, y_classification = load_breast_cancer(return_X_y=True)
params_classification = {'n_estimators': 2, 'verbose': -1,
'objective': 'binary', 'metric': 'binary_logloss'}
params_fit_classification = {'X': X_classification, 'y': y_classification,
'eval_set': (X_classification, y_classification),
'verbose': False}
gbm = lgb.LGBMClassifier(**params_classification).fit(eval_metric=['fair', 'error'],
**params_fit_classification)
assert len(gbm.evals_result_['training']) == 3
assert 'fair' in gbm.evals_result_['training']
assert 'binary_error' in gbm.evals_result_['training']
assert 'binary_logloss' in gbm.evals_result_['training']
# default metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', **params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'l1' in gbm.evals_result_['training']
# non-default metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='mape',
**params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'mape' in gbm.evals_result_['training']
# no metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='None',
**params).fit(**params_fit)
assert gbm.evals_result_ is None
# non-default metric in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1',
**params).fit(eval_metric='mape', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l1' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default metric with non-default metric in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='gamma',
**params).fit(eval_metric='mape', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'gamma' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default metric with multiple metrics in eval_metric for non-default objective
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='gamma',
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'gamma' in gbm.evals_result_['training']
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# custom objective, no custom metric
# default regression metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, **params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'l2' in gbm.evals_result_['training']
# non-default regression metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape', **params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'mape' in gbm.evals_result_['training']
# multiple regression metrics for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(**params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l1' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
# no metric
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='None',
**params).fit(**params_fit)
assert gbm.evals_result_ is None
# default regression metric with non-default metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj,
**params).fit(eval_metric='mape', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# non-default regression metric with metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape',
**params).fit(eval_metric='gamma', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'mape' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
# multiple regression metrics with metric in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(eval_metric='l2', **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'l1' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
assert 'l2' in gbm.evals_result_['training']
# multiple regression metrics with multiple metrics in eval_metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l1', 'gamma'],
**params).fit(eval_metric=['l2', 'mape'], **params_fit)
assert len(gbm.evals_result_['training']) == 4
assert 'l1' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
# no custom objective, custom metric
# default metric with custom metric
gbm = lgb.LGBMRegressor(**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l2' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# non-default metric with custom metric
gbm = lgb.LGBMRegressor(metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'mape' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# multiple metrics with custom metric
gbm = lgb.LGBMRegressor(metric=['l1', 'gamma'],
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'l1' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# custom metric (disable default metric)
gbm = lgb.LGBMRegressor(metric='None',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'error' in gbm.evals_result_['training']
# default metric for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'l1' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# non-default metric for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'mape' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# multiple metrics for non-default objective with custom metric
gbm = lgb.LGBMRegressor(objective='regression_l1', metric=['l1', 'gamma'],
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'l1' in gbm.evals_result_['training']
assert 'gamma' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# custom metric (disable default metric for non-default objective)
gbm = lgb.LGBMRegressor(objective='regression_l1', metric='None',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'error' in gbm.evals_result_['training']
# custom objective, custom metric
# custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj,
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'error' in gbm.evals_result_['training']
# non-default regression metric with custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric='mape',
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'mape' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
# multiple regression metrics with custom metric for custom objective
gbm = lgb.LGBMRegressor(objective=custom_dummy_obj, metric=['l2', 'mape'],
**params).fit(eval_metric=constant_metric, **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'l2' in gbm.evals_result_['training']
assert 'mape' in gbm.evals_result_['training']
assert 'error' in gbm.evals_result_['training']
X, y = load_digits(n_class=3, return_X_y=True)
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# default metric and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(**params).fit(eval_metric='binary_error', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'multi_logloss' in gbm.evals_result_['training']
assert 'multi_error' in gbm.evals_result_['training']
# invalid objective is replaced with default multiclass one
# and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(objective='invalid_obj',
**params).fit(eval_metric='binary_error', **params_fit)
assert gbm.objective_ == 'multiclass'
assert len(gbm.evals_result_['training']) == 2
assert 'multi_logloss' in gbm.evals_result_['training']
assert 'multi_error' in gbm.evals_result_['training']
# default metric for non-default multiclass objective
# and invalid binary metric is replaced with multiclass alternative
gbm = lgb.LGBMClassifier(objective='ovr',
**params).fit(eval_metric='binary_error', **params_fit)
assert gbm.objective_ == 'ovr'
assert len(gbm.evals_result_['training']) == 2
assert 'multi_logloss' in gbm.evals_result_['training']
assert 'multi_error' in gbm.evals_result_['training']
X, y = load_digits(n_class=2, return_X_y=True)
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# default metric and invalid multiclass metric is replaced with binary alternative
gbm = lgb.LGBMClassifier(**params).fit(eval_metric='multi_error', **params_fit)
assert len(gbm.evals_result_['training']) == 2
assert 'binary_logloss' in gbm.evals_result_['training']
assert 'binary_error' in gbm.evals_result_['training']
# invalid multiclass metric is replaced with binary alternative for custom objective
gbm = lgb.LGBMClassifier(objective=custom_dummy_obj,
**params).fit(eval_metric='multi_logloss', **params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'binary_logloss' in gbm.evals_result_['training']
def test_multiple_eval_metrics():
X, y = load_breast_cancer(return_X_y=True)
params = {'n_estimators': 2, 'verbose': -1, 'objective': 'binary', 'metric': 'binary_logloss'}
params_fit = {'X': X, 'y': y, 'eval_set': (X, y), 'verbose': False}
# Verify that can receive a list of metrics, only callable
gbm = lgb.LGBMClassifier(**params).fit(eval_metric=[constant_metric, decreasing_metric], **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'error' in gbm.evals_result_['training']
assert 'decreasing_metric' in gbm.evals_result_['training']
assert 'binary_logloss' in gbm.evals_result_['training']
# Verify that can receive a list of custom and built-in metrics
gbm = lgb.LGBMClassifier(**params).fit(eval_metric=[constant_metric, decreasing_metric, 'fair'], **params_fit)
assert len(gbm.evals_result_['training']) == 4
assert 'error' in gbm.evals_result_['training']
assert 'decreasing_metric' in gbm.evals_result_['training']
assert 'binary_logloss' in gbm.evals_result_['training']
assert 'fair' in gbm.evals_result_['training']
# Verify that works as expected when eval_metric is empty
gbm = lgb.LGBMClassifier(**params).fit(eval_metric=[], **params_fit)
assert len(gbm.evals_result_['training']) == 1
assert 'binary_logloss' in gbm.evals_result_['training']
# Verify that can receive a list of metrics, only built-in
gbm = lgb.LGBMClassifier(**params).fit(eval_metric=['fair', 'error'], **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'binary_logloss' in gbm.evals_result_['training']
# Verify that eval_metric is robust to receiving a list with None
gbm = lgb.LGBMClassifier(**params).fit(eval_metric=['fair', 'error', None], **params_fit)
assert len(gbm.evals_result_['training']) == 3
assert 'binary_logloss' in gbm.evals_result_['training']
def test_inf_handle():
nrows = 100
ncols = 10
X = np.random.randn(nrows, ncols)
y = np.random.randn(nrows) + np.full(nrows, 1e30)
weight = np.full(nrows, 1e10)
params = {'n_estimators': 20, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'sample_weight': weight, 'eval_set': (X, y),
'verbose': False, 'early_stopping_rounds': 5}
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
np.testing.assert_allclose(gbm.evals_result_['training']['l2'], np.inf)
def test_nan_handle():
nrows = 100
ncols = 10
X = np.random.randn(nrows, ncols)
y = np.random.randn(nrows) + np.full(nrows, 1e30)
weight = np.zeros(nrows)
params = {'n_estimators': 20, 'verbose': -1}
params_fit = {'X': X, 'y': y, 'sample_weight': weight, 'eval_set': (X, y),
'verbose': False, 'early_stopping_rounds': 5}
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
np.testing.assert_allclose(gbm.evals_result_['training']['l2'], np.nan)
def test_first_metric_only():
def fit_and_check(eval_set_names, metric_names, assumed_iteration, first_metric_only):
params['first_metric_only'] = first_metric_only
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
assert len(gbm.evals_result_) == len(eval_set_names)
for eval_set_name in eval_set_names:
assert eval_set_name in gbm.evals_result_
assert len(gbm.evals_result_[eval_set_name]) == len(metric_names)
for metric_name in metric_names:
assert metric_name in gbm.evals_result_[eval_set_name]
actual = len(gbm.evals_result_[eval_set_name][metric_name])
expected = assumed_iteration + (params_fit['early_stopping_rounds']
if eval_set_name != 'training'
and assumed_iteration != gbm.n_estimators else 0)
assert expected == actual
if eval_set_name != 'training':
assert assumed_iteration == gbm.best_iteration_
else: