-
Notifications
You must be signed in to change notification settings - Fork 197
/
predict.py
91 lines (79 loc) · 4.62 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
from settings import ProblemTypes, version
import os
import argparse
import logging
from ModelConf import ModelConf
from problem import Problem
from LearningMachine import LearningMachine
def main(params):
conf = ModelConf('predict', params.conf_path, version, params, mode=params.mode)
problem = Problem('predict', conf.problem_type, conf.input_types, None,
with_bos_eos=conf.add_start_end_for_seq, tagging_scheme=conf.tagging_scheme, tokenizer=conf.tokenizer,
remove_stopwords=conf.remove_stopwords, DBC2SBC=conf.DBC2SBC, unicode_fix=conf.unicode_fix)
if os.path.isfile(conf.saved_problem_path):
problem.load_problem(conf.saved_problem_path)
logging.info("Problem loaded!")
logging.debug("Problem loaded from %s" % conf.saved_problem_path)
else:
raise Exception("Problem does not exist!")
if len(conf.predict_fields_post_check) > 0:
for field_to_chk in conf.predict_fields_post_check:
field, target = field_to_chk.split('@')
if not problem.output_dict.has_cell(target):
raise Exception("The target %s of %s does not exist in the training data." % (target, field_to_chk))
lm = LearningMachine('predict', conf, problem, vocab_info=None, initialize=False, use_gpu=conf.use_gpu)
lm.load_model(conf.previous_model_path)
if params.predict_mode == 'batch':
logging.info('Predicting %s with the model saved at %s' % (conf.predict_data_path, conf.previous_model_path))
if params.predict_mode == 'batch':
lm.predict(conf.predict_data_path, conf.predict_output_path, conf.predict_file_columns, conf.predict_fields)
logging.info("Predict done! The predict result: %s" % conf.predict_output_path)
elif params.predict_mode == 'interactive':
print('='*80)
task_type = str(ProblemTypes[problem.problem_type]).split('.')[1]
sample_format = list(conf.predict_file_columns.keys())
target_ = conf.conf['inputs'].get('target', None)
target_list = list(target_) if target_ else []
for single_element in sample_format[:]:
if single_element in target_list:
sample_format.remove(single_element)
predict_file_columns = {}
for index, single in enumerate(sample_format):
predict_file_columns[single] = index
print('Enabling Interactive Inference Mode for %s Task...' % (task_type.upper()))
print('%s Task Interactive. The sample format is <%s>' % (task_type.upper(), ', '.join(sample_format)))
case_cnt = 1
while True:
print('Case%d:' % case_cnt)
sample = []
for single in sample_format:
temp_ = input('\t%s: ' % single)
if temp_.lower() == 'exit':
exit(0)
sample.append(temp_)
sample = '\t'.join(sample)
result = lm.interactive([sample], predict_file_columns, conf.predict_fields, params.predict_mode)
print('\tInference result: %s' % result)
case_cnt += 1
else:
raise Exception('Predict mode support interactive|batch, get %s' % params.predict_mode)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Prediction')
parser.add_argument("--conf_path", type=str, help="configuration path")
parser.add_argument("--predict_mode", type=str, default='batch', help='interactive|batch')
parser.add_argument("--predict_data_path", type=str, help='specify another predict data path, instead of the one defined in configuration file')
parser.add_argument("--previous_model_path", type=str, help='load model trained previously.')
parser.add_argument("--predict_output_path", type=str, help='specify another prediction output path, instead of conf[outputs][save_base_dir] + conf[outputs][predict_output_name] defined in configuration file')
parser.add_argument("--log_dir", type=str)
parser.add_argument("--batch_size", type=int, help='batch_size of each gpu')
parser.add_argument("--mode", type=str, default='normal', help='normal|philly')
parser.add_argument("--force", type=bool, default=False, help='Allow overwriting if some files or directories already exist.')
parser.add_argument("--disable_log_file", type=bool, default=False, help='If True, disable log file')
parser.add_argument("--debug", type=bool, default=False)
params, _ = parser.parse_known_args()
assert params.conf_path, 'Please specify a configuration path via --conf_path'
if params.debug is True:
import debugger
main(params)