-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_learning_compiler_run_model_example.java
163 lines (146 loc) · 7.18 KB
/
deep_learning_compiler_run_model_example.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// SPDX-License-Identifier: Apache-2.0
/*
* Copyright contributors to the deep-learning-compiler-container-images project
*
*/
/*
* Description: Java Example for calling model APIs
*/
import java.util.ArrayList;
import java.util.Arrays;
import com.ibm.onnxmlir.OMModel;
import com.ibm.onnxmlir.OMTensor;
import com.ibm.onnxmlir.OMTensorList;
public class deep_learning_compiler_run_model_example {
public static OMTensorList generateInput() throws Exception {
ArrayList<OMTensor> inputTensorArrayList = new ArrayList<OMTensor>();
// The model input signature is returned as JSON output
// The input signature for the resnet50-caffe2-v1-8 model is:
// [ { "type" : "f32" , "dims" : [1 , 3 , 224 , 224] , "name" : "gpu_0/data_0" }]
String modelInputSig = OMModel.inputSignature();
// Use string search to parse the JSON and generate random input values.
int tensorStrStart = 0, tensorStrEnd = 0;
while (tensorStrStart < modelInputSig.lastIndexOf("}")) {
// Each input tensor is wrapped in {}'s
tensorStrStart = modelInputSig.indexOf("{", tensorStrStart) + 1;
tensorStrEnd = modelInputSig.indexOf("}", tensorStrStart);
String tensorStr = modelInputSig.substring(
tensorStrStart, tensorStrEnd);
// The shape for each input tensor is wrapped in []'s.
int dimStart = modelInputSig.indexOf("[", tensorStrStart) + 1;
int dimEnd = modelInputSig.indexOf("]", tensorStrStart);
String dimsStr[] = modelInputSig.substring(
dimStart, dimEnd).split(" , *");
// Convert shape strings to numeric values.
long[] inputShape = new long[dimsStr.length];
int inputSize = 1;
boolean foundDynamicDim = false;
for (int i = 0; i < inputShape.length; i++) {
long value = Long.valueOf(dimsStr[i]);
if (value == -1 ) {
if (foundDynamicDim) {
throw new Exception(
"Example client only supports a single dynamic "+
"dimension (-1). However multiple dynamic " +
"dimensions were found for input " + tensorStr);
} else {
value = 1;
foundDynamicDim = true;
}
}
inputSize *=value;
inputShape[i] = value;
}
if (!tensorStr.contains("f32")) {
throw new Exception(
"Example client only supports signature type: f32 but got type " +
tensorStr);
}
// Generate a random input tensor for our model.
float[] inputData = new float[inputSize];
for (int i = 0; i < inputData.length; i++) {
inputData[i] = (float) Math.random() * 100;
}
// Shift down the string for the next iteration
tensorStrStart = tensorStrEnd;
// Add input tensor to input list
inputTensorArrayList.add(new OMTensor(inputData, inputShape));
}
// Inference input needs to be an OMTensorList which requires an Array
OMTensor[] inputTensorArray = inputTensorArrayList.toArray(new OMTensor[0]);
return new OMTensorList(inputTensorArray);
}
public static void main(String args[]) throws Exception {
OMTensorList inputOMTensorList = generateInput();
// Run the model.
OMTensorList outputOMTensorList = OMModel.mainGraph(inputOMTensorList);
OMTensor[] outputTensorArray = outputOMTensorList.getOmtArray();
// Print results.
for (int tensorIdx = 0; tensorIdx < outputTensorArray.length; tensorIdx++ ) {
OMTensor outputTensor = outputTensorArray[tensorIdx];
System.out.print(
"output_tensor[" + tensorIdx + "] " +
"has shape " + Arrays.toString(outputTensor.getShape()) + " " +
"and values ");
switch(outputTensor.getDataType()) {
case OMTensor.ONNX_TYPE_BOOL:
System.out.println("of type bool[]:");
byte[] bool_bytes = outputTensor.getBoolData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + bool_bytes[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_INT8:
case OMTensor.ONNX_TYPE_UINT8:
System.out.println("of type byte[]:");
byte[] int_bytes = outputTensor.getByteData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + int_bytes[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_INT16:
case OMTensor.ONNX_TYPE_UINT16:
System.out.println("of type short[]:");
short[] shorts = outputTensor.getShortData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + shorts[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_INT32:
case OMTensor.ONNX_TYPE_UINT32:
System.out.println("of type int[]:");
int[] ints = outputTensor.getIntData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + ints[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_INT64:
case OMTensor.ONNX_TYPE_UINT64:
System.out.println("of type long[]:");
long[] longs = outputTensor.getLongData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + longs[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_FLOAT:
System.out.println("of type float[]:");
float[] floats = outputTensor.getFloatData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + floats[valueIdx]);
}
break;
case OMTensor.ONNX_TYPE_DOUBLE:
System.out.println("of type double[]:");
double[] doubles = outputTensor.getDoubleData();
for (int valueIdx = 0; valueIdx < outputTensor.getNumElems(); ++valueIdx) {
System.out.println("\t" + doubles[valueIdx]);
}
break;
default:
throw new Exception(
"Example client doesn't support output tensors with " +
"OMTensor type " + outputTensor.getDataType());
}
}
}
}