-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_example.py
169 lines (123 loc) · 5.65 KB
/
test_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import json
from lovasz_losses_tf import *
import tensorflow
import nibabel as nib
import numpy as np
from glob import glob
import os
import cv2
f = open('MedML.json')
MedML = json.load(f)
def dice_loss(y_true, y_pred):
numerator = 2 * tensorflow.reduce_sum(y_true * y_pred, axis=-1)
denominator = tensorflow.reduce_sum(y_true + y_pred, axis=-1)
return 1 - (numerator + 1) / (denominator + 1)
def balanced_cross_entropy(beta):
def convert_to_logits(y_pred):
# see https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/keras/backend.py#L3525
y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(), 1 - tf.keras.backend.epsilon())
return tf.log(y_pred / (1 - y_pred))
def loss(y_true, y_pred):
y_pred = convert_to_logits(y_pred)
pos_weight = beta / (1 - beta)
loss = tf.nn.weighted_cross_entropy_with_logits(logits=y_pred, targets=y_true, pos_weight=pos_weight)
# or reduce_sum and/or axis=-1
return tf.reduce_mean(loss * (1 - beta))
return loss
def weighted_cross_entropy(beta):
def convert_to_logits(y_pred):
# see https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/keras/backend.py#L3525
y_pred = tf.clip_by_value(y_pred, tf.keras.backend.epsilon(), 1 - tf.keras.backend.epsilon())
return tf.log(y_pred / (1 - y_pred))
def loss(y_true, y_pred):
y_pred = convert_to_logits(y_pred)
loss = tf.nn.weighted_cross_entropy_with_logits(logits=y_pred, targets=y_true, pos_weight=beta)
# or reduce_sum and/or axis=-1
return tf.reduce_mean(loss)
return loss
def intersection_over_union(num_classes):
return tf.keras.metrics.MeanIoU(num_classes=num_classes)
def tversky_loss(beta):
def loss(y_true, y_pred):
numerator = tensorflow.reduce_sum(y_true * y_pred, axis=-1)
denominator = y_true * y_pred + beta * (1 - y_true) * y_pred + (1 - beta) * y_true * (1 - y_pred)
return 1 - (numerator + 1) / (tensorflow.reduce_sum(denominator, axis=-1) + 1)
return loss
def lovasz_softmax(y_true, y_pred):
return lovasz_hinge(labels=y_true, logits=y_pred)
def execute():
# TODO read in your parameters from the JSON file
X = MedML.get('X')
Y = MedML.get('Y')
sliceSamples = int(MedML.get('Slice samples'))
# This will be the name of the data eval folder
input_folder = 'data_eval'
model_input_size = (int(X), int(Y))
lossDict = MedML.get('Loss function')
# check and call the selected loss and insert parameter
if (lossDict == "dice_loss"):
lossVal = dice_loss
if (lossDict == "balanced_cross_entropy"):
lossVal = balanced_cross_entropy
if (lossDict == "weighted_cross_entropy"):
lossVal = weighted_cross_entropy
if (lossDict == "intersection_over_union"):
lossVal = intersection_over_union(MedML.get('Number of segmentation classes'))
if (lossDict == "tversky_loss"):
lossVal = tversky_loss
if (lossDict == "lovasz_softmax"):
lossVal = lovasz_softmax
print('load model')
model = tensorflow.keras.models.load_model('model.h5', custom_objects={lossDict: lossVal})
# optionally consider loading best weights here as well
print('searching for data')
inputFiles = glob(os.path.join(input_folder, '*.nii.gz'), recursive=True) + glob(
os.path.join(input_folder, '*.nii'), recursive=True)
print('evaluating model')
for f in inputFiles:
print('processing {}'.format(f))
# load data
nii = nib.load(f)
nii_data = nii.get_fdata()
data_input_size = (nii_data.shape[0], nii_data.shape[1])
out_data = np.zeros_like(nii_data)
# loop through slices
for i in range(0, nii_data.shape[2] - sliceSamples):
# determine sampling range
if sliceSamples == 1:
z = i
seg_z = z + sliceSamples // 2
else:
# warning, sliceSamples is assumed to be 1,3,5,7,9
z = range(i, i + sliceSamples)
# output segmentation will be the center slice
seg_z = z[0] + sliceSamples // 2
# resize input data to fit model
curr_input = cv2.resize(nii_data[:, :, z], dsize=model_input_size, interpolation=cv2.INTER_CUBIC)
if sliceSamples == 1:
curr_input = curr_input[np.newaxis, ..., np.newaxis] # make input size= [1,X,Y,1]
else:
curr_input = curr_input[np.newaxis, ...] # make input size= [1,X,Y,sliceSamples]
# predict segmentation
curr_output = model.predict(curr_input)
# convert from channel-encoding to integer encoding
curr_output_flat = np.zeros((curr_output.shape[1], curr_output.shape[2]))
for c in range(0, curr_output.shape[3]):
curr_output_flat += np.squeeze(curr_output[0, :, :, c])
# reshape segmentation to match input data size
curr_output_flat = cv2.resize(curr_output_flat, dsize=data_input_size, interpolation=cv2.INTER_NEAREST)
# store in output array
out_data[:, :, seg_z] = curr_output_flat
# save file
# first create new Nifti object based on the input
new_nii = nib.Nifti1Image(out_data, nii.affine, nii.header)
# next determine the filename
drive, filepath = os.path.splitdrive(f)
path, filename = os.path.split(filepath)
new_base = filename.replace('.nii', '_seg.nii')
new_file = os.path.join(drive, path, new_base)
# now write to disk
nib.save(new_nii, new_file)
print('done')
if __name__ == "__main__":
execute()