-
Notifications
You must be signed in to change notification settings - Fork 0
/
unixcoder.py
250 lines (210 loc) · 10 KB
/
unixcoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel, RobertaConfig
class UniXcoder(nn.Module):
def __init__(self, model_name):
"""
Build UniXcoder.
Parameters:
* `model_name`- huggingface model card name. e.g. microsoft/unixcoder-base
"""
super(UniXcoder, self).__init__()
self.tokenizer = RobertaTokenizer.from_pretrained(model_name)
self.config = RobertaConfig.from_pretrained(model_name)
self.config.is_decoder = True
self.model = RobertaModel.from_pretrained(model_name, config=self.config)
self.register_buffer("bias", torch.tril(torch.ones((1024, 1024), dtype=torch.uint8)).view(1,1024, 1024))
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
self.lm_head.weight = self.model.embeddings.word_embeddings.weight
self.lsm = nn.LogSoftmax(dim=-1)
self.tokenizer.add_tokens(["<mask0>"],special_tokens=True)
def tokenize(self, inputs, mode="<encoder-only>", max_length=512, padding=False):
"""
Convert string to token ids
Parameters:
* `inputs`- list of input strings.
* `max_length`- The maximum total source sequence length after tokenization.
* `padding`- whether to pad source sequence length to max_length.
* `mode`- which mode the sequence will use. i.e. <encoder-only>, <decoder-only>, <encoder-decoder>
"""
assert mode in ["<encoder-only>", "<decoder-only>", "<encoder-decoder>"]
assert max_length < 1024
tokenizer = self.tokenizer
tokens_ids = []
for x in inputs:
tokens = tokenizer.tokenize(x)
if mode == "<encoder-only>":
tokens = tokens[:max_length-4]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens + [tokenizer.sep_token]
elif mode == "<decoder-only>":
tokens = tokens[-(max_length-3):]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens
else:
tokens = tokens[:max_length-5]
tokens = [tokenizer.cls_token,mode,tokenizer.sep_token] + tokens + [tokenizer.sep_token]
tokens_id = tokenizer.convert_tokens_to_ids(tokens)
if padding:
tokens_id = tokens_id + [self.config.pad_token_id] * (max_length-len(tokens_id))
tokens_ids.append(tokens_id)
return tokens_ids
def decode(self, source_ids):
""" Convert token ids to string """
predictions = []
for x in source_ids:
prediction = []
for y in x:
t = y.cpu().numpy()
t = list(t)
if 0 in t:
t = t[:t.index(0)]
text = self.tokenizer.decode(t,clean_up_tokenization_spaces=False)
prediction.append(text)
predictions.append(prediction)
return predictions
def forward(self, source_ids):
""" Obtain token embeddings and sentence embeddings """
mask = source_ids.ne(self.config.pad_token_id)
token_embeddings = self.model(source_ids,attention_mask = mask.unsqueeze(1) * mask.unsqueeze(2))[0]
sentence_embeddings = (token_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)
return token_embeddings, sentence_embeddings
def generate(self, source_ids, decoder_only = True, eos_id = None, beam_size = 5, max_length = 64):
""" Generate sequence given context (source_ids) """
# Set encoder mask attention matrix: bidirectional for <encoder-decoder>, unirectional for <decoder-only>
if decoder_only:
mask = self.bias[:,:source_ids.size(-1),:source_ids.size(-1)]
else:
mask = source_ids.ne(self.config.pad_token_id)
mask = mask.unsqueeze(1) * mask.unsqueeze(2)
if eos_id is None:
eos_id = self.config.eos_token_id
device = source_ids.device
# Decoding using beam search
preds = []
zero = torch.LongTensor(1).fill_(0).to(device)
source_len = list(source_ids.ne(1).sum(-1).cpu().numpy())
length = source_ids.size(-1)
encoder_output = self.model(source_ids,attention_mask=mask)
for i in range(source_ids.shape[0]):
context = [[x[i:i+1,:,:source_len[i]].repeat(beam_size,1,1,1) for x in y]
for y in encoder_output.past_key_values]
beam = Beam(beam_size,eos_id,device)
input_ids = beam.getCurrentState().clone()
context_ids = source_ids[i:i+1,:source_len[i]].repeat(beam_size,1)
out = encoder_output.last_hidden_state[i:i+1,:source_len[i]].repeat(beam_size,1,1)
for _ in range(max_length):
if beam.done():
break
if _ == 0:
hidden_states = out[:,-1,:]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = beam.getCurrentState().clone()
else:
length = context_ids.size(-1)+input_ids.size(-1)
out = self.model(input_ids,attention_mask=self.bias[:,context_ids.size(-1):length,:length],
past_key_values=context).last_hidden_state
hidden_states = out[:,-1,:]
out = self.lsm(self.lm_head(hidden_states)).data
beam.advance(out)
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin()))
input_ids = torch.cat((input_ids,beam.getCurrentState().clone()),-1)
hyp = beam.getHyp(beam.getFinal())
pred = beam.buildTargetTokens(hyp)[:beam_size]
pred = [torch.cat([x.view(-1) for x in p]+[zero]*(max_length-len(p))).view(1,-1) for p in pred]
preds.append(torch.cat(pred,0).unsqueeze(0))
preds = torch.cat(preds,0)
return preds
class Beam(object):
def __init__(self, size, eos, device):
self.size = size
self.device = device
# The score for each translation on the beam.
self.scores = torch.FloatTensor(size).zero_().to(device)
# The backpointers at each time-step.
self.prevKs = []
# The outputs at each time-step.
self.nextYs = [torch.LongTensor(size).fill_(0).to(device)]
# Has EOS topped the beam yet.
self._eos = eos
self.eosTop = False
# Time and k pair for finished.
self.finished = []
def getCurrentState(self):
"Get the outputs for the current timestep."
batch = self.nextYs[-1].view(-1, 1)
return batch
def getCurrentOrigin(self):
"Get the backpointers for the current timestep."
return self.prevKs[-1]
def advance(self, wordLk):
"""
Given prob over words for every last beam `wordLk` and attention
`attnOut`: Compute and update the beam search.
Parameters:
* `wordLk`- probs of advancing from the last step (K x words)
* `attnOut`- attention at the last step
Returns: True if beam search is complete.
"""
numWords = wordLk.size(1)
# Sum the previous scores.
if len(self.prevKs) > 0:
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)
# Don't let EOS have children.
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
beamLk[i] = -1e20
else:
beamLk = wordLk[0]
flatBeamLk = beamLk.view(-1)
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)
self.scores = bestScores
# bestScoresId is flattened beam x word array, so calculate which
# word and beam each score came from
prevK = torch.div(bestScoresId, numWords, rounding_mode="floor")
self.prevKs.append(prevK)
self.nextYs.append((bestScoresId - prevK * numWords))
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] == self._eos:
s = self.scores[i]
self.finished.append((s, len(self.nextYs) - 1, i))
# End condition is when top-of-beam is EOS and no global score.
if self.nextYs[-1][0] == self._eos:
self.eosTop = True
def done(self):
return self.eosTop and len(self.finished) >= self.size
def getFinal(self):
if len(self.finished) == 0:
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
self.finished.sort(key=lambda a: -a[0])
if len(self.finished) != self.size:
unfinished=[]
for i in range(self.nextYs[-1].size(0)):
if self.nextYs[-1][i] != self._eos:
s = self.scores[i]
unfinished.append((s, len(self.nextYs) - 1, i))
unfinished.sort(key=lambda a: -a[0])
self.finished+=unfinished[:self.size-len(self.finished)]
return self.finished[:self.size]
def getHyp(self, beam_res):
"""
Walk back to construct the full hypothesis.
"""
hyps=[]
for _,timestep, k in beam_res:
hyp = []
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
hyp.append(self.nextYs[j+1][k])
k = self.prevKs[j][k]
hyps.append(hyp[::-1])
return hyps
def buildTargetTokens(self, preds):
sentence=[]
for pred in preds:
tokens = []
for tok in pred:
if tok==self._eos:
break
tokens.append(tok)
sentence.append(tokens)
return sentence