-
Notifications
You must be signed in to change notification settings - Fork 18
/
metadata.yaml
54 lines (48 loc) · 1.32 KB
/
metadata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
framework:
- name: tensorflow
- version: 1.12.0
- runtime: python2.7
- requirement(optional):
- numpy: 1.14.0
- grpc: 0.3.post19
model:
- name: image-recognition
- version: 1.0
- source : http://... or test.py
- creator: Xiyuan_Wang
- time: 2019-02-26
- type: Enum(Keras, Graph...)
dataset:
- name: mnist
- version: 1.0
- source: http://... or dataset.zip
# data_process differs in various ways, this is particularly for the mnist example
# suggest to implement with a base + plugin structure. Base contains the most basic keyword definition like
# the dataset_split while plugin contains functions in different scenarios like image recognition, voice
# recognition and so on
data_process:
- data_load:
- data_split:
- padding:
- truncating:
- type: enum(Image, NLP, voice)
- key1: value1
- key2: value2
# the model architecture combines with 'model' if there already exists the model file, or this section may
# be useful with the Dynamic Computation Graphs?
model_architecture:
- input:
- fully_connected_layer:
- output:
- dropout:
- embedding:
- batch_normalization:
training_params:
- learning_rate:
- loss:
- batch_size:
- epoch:
- optimizer:
- xxx
- yyy
- train_op: