-
Notifications
You must be signed in to change notification settings - Fork 34
/
time.py
1280 lines (1136 loc) · 45.9 KB
/
time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: Adam Li <[email protected]>
# Santeri Ruuskanen <[email protected]>
# Thomas S. Binns <[email protected]>
#
# License: BSD (3-clause)
import inspect
import numpy as np
import xarray as xr
from mne.epochs import BaseEpochs
from mne.parallel import parallel_func
from mne.time_frequency import dpss_windows, tfr_array_morlet, tfr_array_multitaper
from mne.utils import _validate_type, logger, verbose
from ..base import EpochSpectralConnectivity, SpectralConnectivity
from ..utils import _check_multivariate_indices, check_indices, fill_doc
from .epochs import _compute_freq_mask
from .epochs_multivariate import (
_CON_METHOD_MAP_MULTIVARIATE,
_check_rank_input,
_gc_methods,
_multivariate_methods,
_patterns_methods,
)
from .smooth import _create_kernel, _smooth_spectra
@verbose
@fill_doc
def spectral_connectivity_time(
data,
freqs,
method="coh",
average=False,
indices=None,
sfreq=None,
fmin=None,
fmax=None,
fskip=0,
faverage=False,
sm_times=0,
sm_freqs=1,
sm_kernel="hanning",
padding=0,
mode="cwt_morlet",
mt_bandwidth=None,
n_cycles=7,
gc_n_lags=40,
rank=None,
decim=1,
n_jobs=1,
verbose=None,
):
r"""Compute time-frequency-domain connectivity measures.
This function computes spectral connectivity over time from epoched data.
The data may consist of a single epoch.
The connectivity method(s) are specified using the ``method`` parameter.
All methods are based on time-resolved estimates of the cross- and
power spectral densities (CSD/PSD) Sxy and Sxx, Syy.
Parameters
----------
data : array_like, shape (n_epochs, n_signals, n_times) | Epochs
The data from which to compute connectivity.
freqs : array_like
Array of frequencies of interest for time-frequency decomposition.
Only the frequencies within the range specified by ``fmin`` and
``fmax`` are used.
method : str | list of str
Connectivity measure(s) to compute. These can be ``['coh', 'cacoh',
'mic', 'mim', 'plv', 'ciplv', 'pli', 'wpli', 'gc', 'gc_tr']``. These
are:
* %(coh)s
* %(cacoh)s
* %(mic)s
* %(mim)s
* %(plv)s
* %(ciplv)s
* %(pli)s
* %(wpli)s
* %(gc)s
* %(gc_tr)s
Multivariate methods (``['cacoh', 'mic', 'mim', 'gc', 'gc_tr']``)
cannot be called with the other methods.
average : bool
Average connectivity scores over epochs. If ``True``, output will be
an instance of :class:`SpectralConnectivity`, otherwise
:class:`EpochSpectralConnectivity`.
indices : tuple of array_like | None
Two arrays with indices of connections for which to compute
connectivity. If a bivariate method is called, each array for the seeds
and targets should contain the channel indices for the each bivariate
connection. If a multivariate method is called, each array for the
seeds and targets should consist of nested arrays containing
the channel indices for each multivariate connection. If None,
connections between all channels are computed, unless a Granger
causality method is called, in which case an error is raised.
sfreq : float
The sampling frequency. Required if data is not
:class:`Epochs <mne.Epochs>`.
fmin : float | tuple of float | None
The lower frequency of interest. Multiple bands are defined using
a tuple, e.g., ``(8., 20.)`` for two bands with 8 Hz and 20 Hz lower
bounds. If `None`, the lowest frequency in ``freqs`` is used.
fmax : float | tuple of float | None
The upper frequency of interest. Multiple bands are defined using
a tuple, e.g. ``(13., 30.)`` for two band with 13 Hz and 30 Hz upper
bounds. If `None`, the highest frequency in ``freqs`` is used.
fskip : int
Omit every ``(fskip + 1)``-th frequency bin to decimate in frequency
domain.
faverage : bool
Average connectivity scores for each frequency band. If `True`,
the output ``freqs`` will be an array of the median frequencies of each
band.
sm_times : float
Amount of time to consider for the temporal smoothing in seconds.
If zero, no temporal smoothing is applied.
sm_freqs : int
Number of points for frequency smoothing. By default, 1 is used which
is equivalent to no smoothing.
sm_kernel : {'square', 'hanning'}
Smoothing kernel type. Choose either 'square' or 'hanning'.
padding : float
Amount of time to consider as padding at the beginning and end of each
epoch in seconds. See Notes for more information.
mode : str
Time-frequency decomposition method. Can be either: 'multitaper', or
'cwt_morlet'. See :func:`mne.time_frequency.tfr_array_multitaper` and
:func:`mne.time_frequency.tfr_array_morlet` for reference.
mt_bandwidth : float | None
Product between the temporal window length (in seconds) and the full
frequency bandwidth (in Hz). This product can be seen as the surface
of the window on the time/frequency plane and controls the frequency
bandwidth (thus the frequency resolution) and the number of good
tapers. See :func:`mne.time_frequency.tfr_array_multitaper`
documentation.
n_cycles : float | array_like of float
Number of cycles in the wavelet, either a fixed number or one per
frequency. The number of cycles ``n_cycles`` and the frequencies of
interest ``cwt_freqs`` define the temporal window length. For details,
see :func:`mne.time_frequency.tfr_array_morlet` documentation.
gc_n_lags : int
Number of lags to use for the vector autoregressive model when
computing Granger causality. Higher values increase computational cost,
but reduce the degree of spectral smoothing in the results. Only used
if ``method`` contains any of ``['gc', 'gc_tr']``.
rank : tuple of array | None
Two arrays with the rank to project the seed and target data to,
respectively, using singular value decomposition. If `None`, the rank
of the data is computed and projected to. Only used if ``method``
contains any of ``['cacoh', 'mic', 'mim', 'gc', 'gc_tr']``.
decim : int
To reduce memory usage, decimation factor after time-frequency
decomposition. Returns ``tfr[…, ::decim]``.
n_jobs : int
Number of connections to compute in parallel. Memory mapping must be
activated. Please see the Notes section for details.
%(verbose)s
Returns
-------
con : instance of Connectivity | list
Computed connectivity measure(s). An instance of
:class:`EpochSpectralConnectivity`, :class:`SpectralConnectivity`
or a list of instances corresponding to connectivity measures if
several connectivity measures are specified.
The shape of each connectivity dataset is (n_epochs, n_cons, n_freqs).
When "indices" is None and a bivariate method is called,
"n_cons = n_signals ** 2", or if a multivariate method is called
"n_cons = 1". When "indices" is specified, "n_con = len(indices[0])"
for bivariate and multivariate methods.
See Also
--------
mne_connectivity.spectral_connectivity_epochs
mne_connectivity.SpectralConnectivity
mne_connectivity.EpochSpectralConnectivity
Notes
-----
Please note that the interpretation of the measures in this function
depends on the data and underlying assumptions and does not necessarily
reflect a causal relationship between brain regions.
The connectivity measures are computed over time within each epoch and
optionally averaged over epochs. High connectivity values indicate that
the phase coupling (interpreted as estimated connectivity) differences
between signals stay consistent over time.
The spectral densities can be estimated using a multitaper method with
digital prolate spheroidal sequence (DPSS) windows, or a continuous wavelet
transform using Morlet wavelets. The spectral estimation mode is specified
using the ``mode`` parameter.
When using the multitaper spectral estimation method, the
cross-spectral density is computed separately for each taper and aggregated
using a weighted average, where the weights correspond to the concentration
ratios between the DPSS windows.
Spectral estimation using multitaper or Morlet wavelets introduces edge
effects that depend on the length of the wavelet. To remove edge effects,
the parameter ``padding`` can be used to prune the edges of the signal.
Please see the documentation of
:func:`mne.time_frequency.tfr_array_multitaper` and
:func:`mne.time_frequency.tfr_array_morlet` for details on wavelet length
(i.e., time window length).
By default, the connectivity between all signals is computed (only
connections corresponding to the lower-triangular part of the connectivity
matrix). If one is only interested in the connectivity between some
signals, the "indices" parameter can be used. For example, to compute the
connectivity between the signal with index 0 and signals "2, 3, 4" (a total
of 3 connections) one can use the following::
indices = (np.array([0, 0, 0]), # row indices
np.array([2, 3, 4])) # col indices
con = spectral_connectivity_time(data, method='coh',
indices=indices, ...)
In this case ``con.get_data().shape = (3, n_freqs)``. The connectivity
scores are in the same order as defined indices.
For multivariate methods, this is handled differently. If "indices" is
None, connectivity between all signals will be computed and a single
connectivity spectrum will be returned (this is not possible if a Granger
causality method is called). If "indices" is specified, seed and target
indices for each connection should be specified as nested array-likes. For
example, to compute the connectivity between signals (0, 1) -> (2, 3) and
(0, 1) -> (4, 5), indices should be specified as::
indices = (np.array([[0, 1], [0, 1]]), # seeds
np.array([[2, 3], [4, 5]])) # targets
More information on working with multivariate indices and handling
connections where the number of seeds and targets are not equal can be
found in the :doc:`../auto_examples/handling_ragged_arrays` example.
**Supported Connectivity Measures**
The connectivity method(s) is specified using the ``method`` parameter. The
following methods are supported (note: ``E[]`` denotes average over
epochs). Multiple measures can be computed at once by using a list/tuple,
e.g., ``['coh', 'pli']`` to compute coherence and PLI.
'coh' : Coherence given by::
| E[Sxy] |
C = ---------------------
sqrt(E[Sxx] * E[Syy])
'cacoh' : Canonical Coherency (CaCoh) :footcite:`VidaurreEtAl2019`
given by:
:math:`\textrm{CaCoh}=\Large{\frac{\boldsymbol{a}^T\boldsymbol{D}
(\Phi)\boldsymbol{b}}{\sqrt{\boldsymbol{a}^T\boldsymbol{a}
\boldsymbol{b}^T\boldsymbol{b}}}}`
where: :math:`\boldsymbol{D}(\Phi)` is the cross-spectral density
between seeds and targets transformed for a given phase angle
:math:`\Phi`; and :math:`\boldsymbol{a}` and :math:`\boldsymbol{b}`
are eigenvectors for the seeds and targets, such that
:math:`\boldsymbol{a}^T\boldsymbol{D}(\Phi)\boldsymbol{b}`
maximises coherency between the seeds and targets. Taking the
absolute value of the results gives maximised coherence.
'mic' : Maximised Imaginary part of Coherency (MIC)
:footcite:`EwaldEtAl2012` given by:
:math:`\textrm{MIC}=\Large{\frac{\boldsymbol{\alpha}^T
\boldsymbol{E \beta}}{\parallel\boldsymbol{\alpha}\parallel
\parallel\boldsymbol{\beta}\parallel}}`
where: :math:`\boldsymbol{E}` is the imaginary part of the
transformed cross-spectral density between seeds and targets; and
:math:`\boldsymbol{\alpha}` and :math:`\boldsymbol{\beta}` are
eigenvectors for the seeds and targets, such that
:math:`\boldsymbol{\alpha}^T \boldsymbol{E \beta}` maximises the
imaginary part of coherency between the seeds and targets.
'mim' : Multivariate Interaction Measure (MIM)
:footcite:`EwaldEtAl2012` given by:
:math:`\textrm{MIM}=tr(\boldsymbol{EE}^T)`
where :math:`\boldsymbol{E}` is the imaginary part of the
transformed cross-spectral density between seeds and targets.
'plv' : Phase-Locking Value (PLV) :footcite:`LachauxEtAl1999` given
by::
PLV = |E[Sxy/|Sxy|]|
'ciplv' : Corrected imaginary PLV (ciPLV) :footcite:`BrunaEtAl2018`
given by::
|E[Im(Sxy/|Sxy|)]|
ciPLV = ------------------------------------
sqrt(1 - |E[real(Sxy/|Sxy|)]| ** 2)
'pli' : Phase Lag Index (PLI) :footcite:`StamEtAl2007` given by::
PLI = |E[sign(Im(Sxy))]|
'wpli' : Weighted Phase Lag Index (WPLI) :footcite:`VinckEtAl2011`
given by::
|E[Im(Sxy)]|
WPLI = ------------------
E[|Im(Sxy)|]
'gc' : State-space Granger Causality (GC) :footcite:`BarnettSeth2015`
given by:
:math:`GC = ln\Large{(\frac{\lvert\boldsymbol{S}_{tt}\rvert}{\lvert
\boldsymbol{S}_{tt}-\boldsymbol{H}_{ts}\boldsymbol{\Sigma}_{ss
\lvert t}\boldsymbol{H}_{ts}^*\rvert}})`
where: :math:`s` and :math:`t` represent the seeds and targets,
respectively; :math:`\boldsymbol{H}` is the spectral transfer
function; :math:`\boldsymbol{\Sigma}` is the residuals matrix of
the autoregressive model; and :math:`\boldsymbol{S}` is
:math:`\boldsymbol{\Sigma}` transformed by :math:`\boldsymbol{H}`.
'gc_tr' : State-space GC on time-reversed signals
:footcite:`BarnettSeth2015,WinklerEtAl2016` given by the same equation
as for 'gc', but where the autocovariance sequence from which the
autoregressive model is produced is transposed to mimic the reversal of
the original signal in time.
Parallel computation can be activated by setting the ``n_jobs`` parameter.
Under the hood, this utilizes the ``joblib`` library. For effective
parallelization, you should activate memory mapping in MNE-Python by
setting ``MNE_MEMMAP_MIN_SIZE`` and ``MNE_CACHE_DIR``. Activating memory
mapping will make ``joblib`` store arrays greater than the minimum size on
disc, and forego direct RAM access for more efficient processing.
For example, in your code, run
mne.set_config('MNE_MEMMAP_MIN_SIZE', '10M')
mne.set_config('MNE_CACHE_DIR', '/dev/shm')
When ``MNE_MEMMAP_MIN_SIZE=None``, the underlying joblib implementation
results in pickling and unpickling the whole array each time a pair of
indices is accessed, which is slow, compared to memory mapping the array.
This function is based on the ``frites.conn.conn_spec`` implementation in
Frites.
.. versionadded:: 0.3
References
----------
.. footbibliography::
"""
events = None
event_id = None
# extract data from Epochs object
_validate_type(data, (np.ndarray, BaseEpochs), "`data`", "Epochs or a NumPy array")
if isinstance(data, BaseEpochs):
names = data.ch_names
sfreq = data.info["sfreq"]
events = data.events
event_id = data.event_id
# Extract metadata from the Epochs data structure.
# Make Annotations persist through by adding them to the metadata.
metadata = data.metadata
if metadata is None:
annots_in_metadata = False
else:
annots_in_metadata = all(
name not in metadata.columns
for name in ["annot_onset", "annot_duration", "annot_description"]
)
if hasattr(data, "annotations") and not annots_in_metadata:
data.add_annotations_to_metadata(overwrite=True)
metadata = data.metadata
# XXX: remove logic once support for mne<1.6 is dropped
kwargs = dict()
if "copy" in inspect.getfullargspec(data.get_data).kwonlyargs:
kwargs["copy"] = False
data = data.get_data(**kwargs)
n_epochs, n_signals, n_times = data.shape
else:
data = np.asarray(data)
n_epochs, n_signals, n_times = data.shape
names = np.arange(0, n_signals)
metadata = None
if sfreq is None:
raise ValueError(
"Sampling frequency (sfreq) is required with " "array input."
)
# check that method is a list
if isinstance(method, str):
method = [method]
# defaults for fmin and fmax
if fmin is None:
fmin = np.min(freqs)
logger.info("Fmin was not specified. Using fmin=min(freqs)")
if fmax is None:
fmax = np.max(freqs)
logger.info("Fmax was not specified. Using fmax=max(freqs).")
fmin = np.array((fmin,), dtype=float).ravel()
fmax = np.array((fmax,), dtype=float).ravel()
if len(fmin) != len(fmax):
raise ValueError("fmin and fmax must have the same length")
if np.any(fmin > fmax):
raise ValueError("fmax must be larger than fmin")
if len(fmin) != 1 and any(this_method in _gc_methods for this_method in method):
raise ValueError(
"computing Granger causality on multiple frequency "
"bands is not yet supported"
)
if any(this_method in _multivariate_methods for this_method in method):
if not all(this_method in _multivariate_methods for this_method in method):
raise ValueError(
"bivariate and multivariate connectivity methods cannot be "
"used in the same function call"
)
multivariate_con = True
else:
multivariate_con = False
# convert kernel width in time to samples
if isinstance(sm_times, (int, float)):
sm_times = int(np.round(sm_times * sfreq))
# convert frequency smoothing from hz to samples
if isinstance(sm_freqs, (int, float)):
sm_freqs = int(np.round(max(sm_freqs, 1)))
# temporal decimation
if isinstance(decim, int):
sm_times = int(np.round(sm_times / decim))
sm_times = max(sm_times, 1)
# Create smoothing kernel
kernel = _create_kernel(sm_times, sm_freqs, kernel=sm_kernel)
# get indices of pairs of (group) regions
if indices is None:
if multivariate_con:
if any(this_method in _gc_methods for this_method in method):
raise ValueError(
"indices must be specified when computing Granger "
"causality, as all-to-all connectivity is not supported"
)
logger.info("using all indices for multivariate connectivity")
# indices expected to be a masked array, even if not ragged
indices_use = (
np.arange(n_signals, dtype=int)[np.newaxis, :],
np.arange(n_signals, dtype=int)[np.newaxis, :],
)
indices_use = np.ma.masked_array(indices_use, mask=False, fill_value=-1)
else:
logger.info("only using indices for lower-triangular matrix")
indices_use = np.tril_indices(n_signals, k=-1)
else:
if multivariate_con:
# pad ragged indices and mask the invalid entries
indices_use = _check_multivariate_indices(indices, n_signals)
if any(this_method in _gc_methods for this_method in method):
for seed, target in zip(indices_use[0], indices_use[1]):
intersection = np.intersect1d(
seed.compressed(), target.compressed()
)
if intersection.size > 0:
raise ValueError(
"seed and target indices must not intersect when "
"computing Granger causality"
)
# make sure padded indices are stored in the connectivity object
# create a copy so that `indices_use` can be modified
indices = (indices_use[0].copy(), indices_use[1].copy())
else:
indices_use = check_indices(indices)
n_cons = len(indices_use[0])
# unique signals for which we actually need to compute the CSD of
if multivariate_con:
signals_use = np.unique(indices_use.compressed())
remapping = {ch_i: sig_i for sig_i, ch_i in enumerate(signals_use)}
remapped_inds = indices_use.copy()
# multivariate functions expect seed/target remapping
for idx in signals_use:
remapped_inds[indices_use == idx] = remapping[idx]
source_idx = remapped_inds[0]
target_idx = remapped_inds[1]
max_n_channels = len(indices_use[0][0])
else:
# no indices remapping required for bivariate functions
signals_use = np.unique(np.r_[indices_use[0], indices_use[1]])
source_idx = indices_use[0].copy()
target_idx = indices_use[1].copy()
max_n_channels = len(indices_use[0])
# check rank input and compute data ranks if necessary
if multivariate_con:
rank = _check_rank_input(rank, data, indices_use)
else:
rank = None
gc_n_lags = None
# check freqs
if isinstance(freqs, (int, float)):
freqs = [freqs]
# array conversion
freqs = np.asarray(freqs)
# check order for multiple frequencies
if len(freqs) >= 2:
delta_f = np.diff(freqs)
increase = np.all(delta_f > 0)
assert increase, "Frequencies should be in increasing order"
# check that freqs corresponds to at least n_cycles cycles
dur = float(n_times) / sfreq
cycle_freq = n_cycles / dur
if np.any(freqs < cycle_freq):
raise ValueError(
"At least one value in n_cycles corresponds to a"
"wavelet longer than the signal. Use less cycles, "
"higher frequencies, or longer epochs."
)
# check for Nyquist
if np.any(freqs > sfreq / 2):
raise ValueError(
f"Frequencies {freqs[freqs > sfreq / 2]} Hz are "
f"larger than Nyquist = {sfreq / 2:.2f} Hz"
)
# compute frequency mask based on specified min/max and decimation factor
freq_mask = _compute_freq_mask(freqs, fmin, fmax, fskip)
# the frequency points where we compute connectivity
freqs = freqs[freq_mask]
# compute central frequencies
_f = xr.DataArray(np.arange(len(freqs)), dims=("freqs",), coords=(freqs,))
foi_s = _f.sel(freqs=fmin, method="nearest").data
foi_e = _f.sel(freqs=fmax, method="nearest").data
foi_idx = np.c_[foi_s, foi_e]
f_vec = freqs[foi_idx].mean(1)
if faverage:
n_freqs = len(fmin)
out_freqs = f_vec
else:
n_freqs = len(freqs)
out_freqs = freqs
conn = dict()
conn_patterns = dict()
for m in method:
# CaCoh complex-valued, all other methods real-valued
if m == "cacoh":
con_scores_dtype = np.complex128
else:
con_scores_dtype = np.float64
conn[m] = np.zeros((n_epochs, n_cons, n_freqs), dtype=con_scores_dtype)
# prevent allocating memory for a huge array if not required
if m in _patterns_methods:
# patterns shape of [epochs x seeds/targets x cons x channels x freqs]
conn_patterns[m] = np.full(
(n_epochs, 2, n_cons, max_n_channels, n_freqs), np.nan
)
else:
conn_patterns[m] = None
logger.info("Connectivity computation...")
# parameters to pass to the connectivity function
call_params = dict(
method=method,
kernel=kernel,
foi_idx=foi_idx,
source_idx=source_idx,
target_idx=target_idx,
signals_use=signals_use,
mode=mode,
sfreq=sfreq,
freqs=freqs,
faverage=faverage,
n_cycles=n_cycles,
mt_bandwidth=mt_bandwidth,
gc_n_lags=gc_n_lags,
rank=rank,
decim=decim,
padding=padding,
kw_cwt={},
kw_mt={},
n_jobs=n_jobs,
verbose=verbose,
multivariate_con=multivariate_con,
)
for epoch_idx in np.arange(n_epochs):
logger.info(f" Processing epoch {epoch_idx+1} / {n_epochs} ...")
scores, patterns = _spectral_connectivity(data[epoch_idx], **call_params)
for m in method:
conn[m][epoch_idx] = np.stack(scores[m], axis=0)
if patterns[m] is not None:
conn_patterns[m][epoch_idx] = np.stack(patterns[m], axis=0)
for m in method:
if conn_patterns[m] is not None:
# transpose to [seeds/targets x epochs x cons x channels x freqs]
conn_patterns[m] = conn_patterns[m].transpose((1, 0, 2, 3, 4))
if indices is None and not multivariate_con:
conn_flat = conn
conn = dict()
for m in method:
this_conn = np.zeros(
(n_epochs, n_signals, n_signals) + conn_flat[m].shape[2:],
dtype=conn_flat[m].dtype,
)
this_conn[:, source_idx, target_idx] = conn_flat[m]
this_conn = this_conn.reshape(
(
n_epochs,
n_signals**2,
)
+ conn_flat[m].shape[2:]
)
conn[m] = this_conn
# create the connectivity containers
out = []
for m in method:
store_params = {
"data": conn[m],
"patterns": conn_patterns[m],
"freqs": out_freqs,
"n_nodes": n_signals,
"names": names,
"indices": indices,
"method": method,
"spec_method": mode,
"events": events,
"event_id": event_id,
"metadata": metadata,
"rank": rank,
"n_lags": gc_n_lags if m in _gc_methods else None,
}
if average:
store_params["data"] = np.mean(store_params["data"], axis=0)
if conn_patterns[m] is not None:
store_params["patterns"] = np.mean(store_params["patterns"], axis=1)
out.append(SpectralConnectivity(**store_params))
else:
out.append(EpochSpectralConnectivity(**store_params))
logger.info("[Connectivity computation done]")
# return the object instead of list of length one
if len(out) == 1:
return out[0]
else:
return out
def _spectral_connectivity(
data,
method,
kernel,
foi_idx,
source_idx,
target_idx,
signals_use,
mode,
sfreq,
freqs,
faverage,
n_cycles,
mt_bandwidth,
gc_n_lags,
rank,
decim,
padding,
kw_cwt,
kw_mt,
n_jobs,
verbose,
multivariate_con,
):
"""Estimate time-resolved connectivity for one epoch.
Parameters
----------
data : array_like, shape (n_channels, n_times)
Time-series data.
method : list of str
List of connectivity metrics to compute.
kernel : array_like, shape (n_sm_fres, n_sm_times)
Smoothing kernel.
foi_idx : array_like, shape (n_foi, 2)
Upper and lower bound indices of frequency bands.
source_idx : array_like, shape (n_cons,) or (n_cons, n_channels)
Defines the signal pairs of interest together with ``target_idx``.
target_idx : array_like, shape (n_cons,) or (n_cons, n_channels)
Defines the signal pairs of interest together with ``source_idx``.
signals_use : list of int
The unique signals on which connectivity is to be computed.
mode : str
Time-frequency transformation method.
sfreq : float
Sampling frequency.
freqs : array_like
Array of frequencies of interest for time-frequency decomposition.
Only the frequencies within the range specified by ``fmin`` and
``fmax`` are used.
faverage : bool
Average over frequency bands.
n_cycles : float | array_like of float
Number of cycles in the wavelet, either a fixed number or one per
frequency.
mt_bandwidth : float | None
Multitaper time-bandwidth.
gc_n_lags : int
Number of lags to use for the vector autoregressive model when
computing Granger causality.
rank : tuple of array
Ranks to project the seed and target data to.
decim : int
Decimation factor after time-frequency
decomposition.
padding : float
Amount of time to consider as padding at the beginning and end of each
epoch in seconds.
multivariate_con : bool
Whether or not multivariate connectivity is to be computed.
Returns
-------
scores : dict
Dictionary containing the connectivity estimates corresponding to the
metrics in ``method``. Each element is an array of shape (n_cons,
n_freqs) or (n_cons, n_fbands) if ``faverage`` is `True`.
patterns : dict
Dictionary containing the connectivity patterns (for reconstructing the
connectivity components in source-space) corresponding to the metrics
in ``method``, if multivariate methods are called, else an empty
dictionary. Each element is an array of shape (2, n_channels, n_freqs)
or (2, n_channels, 1) if ``faverage`` is `True`, where 2 corresponds to
the seed and target signals (respectively).
"""
n_cons = len(source_idx)
data = np.expand_dims(data, axis=0)
if mode == "cwt_morlet":
out = tfr_array_morlet(
data,
sfreq,
freqs,
n_cycles=n_cycles,
output="complex",
decim=decim,
n_jobs=n_jobs,
**kw_cwt,
)
out = np.expand_dims(out, axis=2) # same dims with multitaper
weights = None
elif mode == "multitaper":
out = tfr_array_multitaper(
data,
sfreq,
freqs,
n_cycles=n_cycles,
time_bandwidth=mt_bandwidth,
output="complex",
decim=decim,
n_jobs=n_jobs,
**kw_mt,
)
if isinstance(n_cycles, (int, float)):
n_cycles = [n_cycles] * len(freqs)
mt_bandwidth = mt_bandwidth if mt_bandwidth else 4
n_tapers = int(np.floor(mt_bandwidth - 1))
weights = np.zeros((n_tapers, len(freqs), out.shape[-1]))
for i, (f, n_c) in enumerate(zip(freqs, n_cycles)):
window_length = np.arange(0.0, n_c / float(f), 1.0 / sfreq).shape[0]
half_nbw = mt_bandwidth / 2.0
n_tapers = int(np.floor(mt_bandwidth - 1))
_, eigvals = dpss_windows(window_length, half_nbw, n_tapers, sym=False)
weights[:, i, :] = np.sqrt(eigvals[:, np.newaxis])
# weights have shape (n_tapers, n_freqs, n_times)
else:
raise ValueError("Mode must be 'cwt_morlet' or 'multitaper'.")
out = np.squeeze(out, axis=0)
if padding:
if padding < 0:
raise ValueError(f"Padding cannot be negative, got {padding}.")
if padding >= data.shape[-1] / sfreq / 2:
raise ValueError(
f"Padding cannot be larger than half of data " f"length, got {padding}."
)
pad_idx = int(np.floor(padding * sfreq / decim))
out = out[..., pad_idx:-pad_idx]
weights = weights[..., pad_idx:-pad_idx] if weights is not None else None
# compute for each connectivity method
scores = {}
patterns = {}
conn = _parallel_con(
out,
method,
kernel,
foi_idx,
source_idx,
target_idx,
signals_use,
gc_n_lags,
rank,
n_jobs,
verbose,
n_cons,
faverage,
weights,
multivariate_con,
)
for i, m in enumerate(method):
if multivariate_con:
scores[m] = conn[0][i]
patterns[m] = conn[1][i] if conn[1][i] is not None else None
else:
scores[m] = [out[i] for out in conn]
patterns[m] = None
return scores, patterns
###############################################################################
###############################################################################
# TIME-RESOLVED CORE FUNCTIONS
###############################################################################
###############################################################################
def _parallel_con(
w,
method,
kernel,
foi_idx,
source_idx,
target_idx,
signals_use,
gc_n_lags,
rank,
n_jobs,
verbose,
total,
faverage,
weights,
multivariate_con,
):
"""Compute spectral connectivity in parallel.
Parameters
----------
w : array_like, shape (n_chans, n_tapers, n_freqs, n_times)
Time-frequency data (complex signal).
method : list of str
List of connectivity metrics to compute.
kernel : array_like, shape (n_sm_fres, n_sm_times)
Smoothing kernel.
foi_idx : array_like, shape (n_foi, 2)
Upper and lower bound indices of frequency bands.
source_idx : array_like, shape (n_cons,) or (n_cons, n_channels)
Defines the signal pairs of interest together with ``target_idx``.
target_idx : array_like, shape (n_cons,) or (n_cons, n_channels)
Defines the signal pairs of interest together with ``source_idx``.
signals_use : list of int
The unique signals on which connectivity is to be computed.
gc_n_lags : int
Number of lags to use for the vector autoregressive model when
computing Granger causality.
rank : tuple of array of int
Ranks to project the seed and target data to.
n_jobs : int
Number of parallel jobs.
total : int
Number of pairs of signals.
faverage : bool
Average over frequency bands.
weights : array_like, shape (n_tapers, n_freqs, n_times)
Multitaper weights.
multivariate_con : bool
Whether or not multivariate connectivity is being computed.
Returns
-------
out : tuple of list of array
Connectivity estimates for each signal pair, method, and frequency or
frequency band. If bivariate methods are called, the output is a tuple
of a list of arrays containing the connectivity scores. If multivariate
methods are called, the output is a tuple of lists containing arrays
for the connectivity scores and patterns, respectively.
"""
if "coh" in method:
# psd
if weights is not None:
psd = weights * w
psd = psd * np.conj(psd)
psd = psd.real.sum(axis=1)
psd = psd * 2 / (weights * weights.conj()).real.sum(axis=0)
else:
psd = w.real**2 + w.imag**2
psd = np.squeeze(psd, axis=1)
# smooth
psd = _smooth_spectra(psd, kernel)
else:
psd = None
if not multivariate_con:
# only show progress if verbosity level is DEBUG
if verbose != "DEBUG" and verbose != "debug" and verbose != 10:
total = None
# define the function to compute in parallel
parallel, my_pairwise_con, n_jobs = parallel_func(
_pairwise_con, n_jobs=n_jobs, verbose=verbose, total=total
)
return tuple(
parallel(
my_pairwise_con(
w, psd, s, t, method, kernel, foi_idx, faverage, weights
)
for s, t in zip(source_idx, target_idx)
)
)
return _multivariate_con(
w,
source_idx,
target_idx,
signals_use,
method,
kernel,
foi_idx,
faverage,
weights,
gc_n_lags,
rank,
n_jobs,
)
def _pairwise_con(w, psd, x, y, method, kernel, foi_idx, faverage, weights):
"""Compute spectral connectivity metrics between two signals.
Parameters
----------
w : array_like, shape (n_chans, n_tapers, n_freqs, n_times)
Time-frequency data.
psd : array_like, shape (n_chans, n_freqs, n_times)
Power spectrum between signals ``x`` and ``y``.
x : int
Channel index.
y : int
Channel index.
method : str
Connectivity method.
kernel : array_like, shape (n_sm_fres, n_sm_times)
Smoothing kernel.
foi_idx : array_like, shape (n_foi, 2)
Upper and lower bound indices of frequency bands.
faverage : bool
Average over frequency bands.
weights : array_like, shape (n_tapers, n_freqs, n_times) | None
Multitaper weights.
Returns
-------
out : list
List of connectivity estimates between signals ``x`` and ``y``
corresponding to the methods in ``method``. Each element is an array
with shape (n_freqs,) or (n_fbands) depending on ``faverage``.
"""
w_x, w_y = w[x], w[y]
if weights is not None:
s_xy = np.sum(weights * w_x * np.conj(weights * w_y), axis=0)
s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=0)
else:
s_xy = w_x * np.conj(w_y)
s_xy = np.squeeze(s_xy, axis=0)
s_xy = _smooth_spectra(s_xy, kernel)
out = []
conn_func = {"plv": _plv, "ciplv": _ciplv, "pli": _pli, "wpli": _wpli, "coh": _coh}