-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Allocator.cpp
862 lines (719 loc) · 27.7 KB
/
Allocator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gc/Allocator.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/TimeStamp.h"
#include <type_traits>
#include "gc/GCInternals.h"
#include "gc/GCLock.h"
#include "gc/GCProbes.h"
#include "gc/Nursery.h"
#include "jit/JitRealm.h"
#include "threading/CpuCount.h"
#include "util/Poison.h"
#include "vm/JSContext.h"
#include "vm/Runtime.h"
#include "vm/StringType.h"
#include "gc/ArenaList-inl.h"
#include "gc/Heap-inl.h"
#include "gc/PrivateIterators-inl.h"
#include "vm/JSObject-inl.h"
using mozilla::TimeDuration;
using mozilla::TimeStamp;
using namespace js;
using namespace gc;
template <AllowGC allowGC /* = CanGC */>
JSObject* js::AllocateObject(JSContext* cx, AllocKind kind,
size_t nDynamicSlots, InitialHeap heap,
const JSClass* clasp) {
MOZ_ASSERT(IsObjectAllocKind(kind));
size_t thingSize = Arena::thingSize(kind);
MOZ_ASSERT(thingSize == Arena::thingSize(kind));
MOZ_ASSERT(thingSize >= sizeof(JSObject_Slots0));
static_assert(
sizeof(JSObject_Slots0) >= MinCellSize,
"All allocations must be at least the allocator-imposed minimum size.");
MOZ_ASSERT_IF(nDynamicSlots != 0, clasp->isNative());
// We cannot trigger GC or make runtime assertions when nursery allocation
// is suppressed, either explicitly or because we are off-thread.
if (cx->isNurseryAllocSuppressed()) {
JSObject* obj = GCRuntime::tryNewTenuredObject<NoGC>(cx, kind, thingSize,
nDynamicSlots);
if (MOZ_UNLIKELY(allowGC && !obj)) {
ReportOutOfMemory(cx);
}
return obj;
}
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState<allowGC>(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap) {
JSObject* obj = rt->gc.tryNewNurseryObject<allowGC>(cx, thingSize,
nDynamicSlots, clasp);
if (obj) {
return obj;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredObject<allowGC>(cx, kind, thingSize,
nDynamicSlots);
}
template JSObject* js::AllocateObject<NoGC>(JSContext* cx, gc::AllocKind kind,
size_t nDynamicSlots,
gc::InitialHeap heap,
const JSClass* clasp);
template JSObject* js::AllocateObject<CanGC>(JSContext* cx, gc::AllocKind kind,
size_t nDynamicSlots,
gc::InitialHeap heap,
const JSClass* clasp);
// Attempt to allocate a new JSObject out of the nursery. If there is not
// enough room in the nursery or there is an OOM, this method will return
// nullptr.
template <AllowGC allowGC>
JSObject* GCRuntime::tryNewNurseryObject(JSContext* cx, size_t thingSize,
size_t nDynamicSlots,
const JSClass* clasp) {
MOZ_RELEASE_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->isNurseryAllocSuppressed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
JSObject* obj =
cx->nursery().allocateObject(cx, thingSize, nDynamicSlots, clasp);
if (obj) {
return obj;
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery.
if (cx->nursery().isEnabled()) {
return cx->nursery().allocateObject(cx, thingSize, nDynamicSlots, clasp);
}
}
return nullptr;
}
template <AllowGC allowGC>
JSObject* GCRuntime::tryNewTenuredObject(JSContext* cx, AllocKind kind,
size_t thingSize,
size_t nDynamicSlots) {
HeapSlot* slots = nullptr;
if (nDynamicSlots) {
slots = cx->maybe_pod_malloc<HeapSlot>(nDynamicSlots);
if (MOZ_UNLIKELY(!slots)) {
if (allowGC) {
ReportOutOfMemory(cx);
}
return nullptr;
}
Debug_SetSlotRangeToCrashOnTouch(slots, nDynamicSlots);
}
JSObject* obj = tryNewTenuredThing<JSObject, allowGC>(cx, kind, thingSize);
if (obj) {
if (nDynamicSlots) {
static_cast<NativeObject*>(obj)->initSlots(slots);
AddCellMemory(obj, nDynamicSlots * sizeof(HeapSlot),
MemoryUse::ObjectSlots);
}
} else {
js_free(slots);
}
return obj;
}
// Attempt to allocate a new string out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template <AllowGC allowGC>
JSString* GCRuntime::tryNewNurseryString(JSContext* cx, size_t thingSize,
AllocKind kind) {
MOZ_ASSERT(IsNurseryAllocable(kind));
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(!cx->isNurseryAllocSuppressed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
Cell* cell = cx->nursery().allocateString(cx->zone(), thingSize);
if (cell) {
return static_cast<JSString*>(cell);
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery, and
// other heuristics can disable nursery strings for this zone.
if (cx->nursery().isEnabled() && cx->zone()->allocNurseryStrings) {
return static_cast<JSString*>(
cx->nursery().allocateString(cx->zone(), thingSize));
}
}
return nullptr;
}
template <typename StringAllocT, AllowGC allowGC /* = CanGC */>
StringAllocT* js::AllocateStringImpl(JSContext* cx, InitialHeap heap) {
static_assert(std::is_convertible_v<StringAllocT*, JSString*>,
"must be JSString derived");
AllocKind kind = MapTypeToFinalizeKind<StringAllocT>::kind;
size_t size = sizeof(StringAllocT);
MOZ_ASSERT(size == Arena::thingSize(kind));
MOZ_ASSERT(size == sizeof(JSString) || size == sizeof(JSFatInlineString));
// Off-thread alloc cannot trigger GC or make runtime assertions.
if (cx->isNurseryAllocSuppressed()) {
StringAllocT* str =
GCRuntime::tryNewTenuredThing<StringAllocT, NoGC>(cx, kind, size);
if (MOZ_UNLIKELY(allowGC && !str)) {
ReportOutOfMemory(cx);
}
return str;
}
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState<allowGC>(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap &&
cx->nursery().canAllocateStrings() && cx->zone()->allocNurseryStrings) {
auto str = static_cast<StringAllocT*>(
rt->gc.tryNewNurseryString<allowGC>(cx, size, kind));
if (str) {
return str;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredThing<StringAllocT, allowGC>(cx, kind, size);
}
// Attempt to allocate a new BigInt out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template <AllowGC allowGC>
JS::BigInt* GCRuntime::tryNewNurseryBigInt(JSContext* cx, size_t thingSize,
AllocKind kind) {
MOZ_ASSERT(IsNurseryAllocable(kind));
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(!cx->isNurseryAllocSuppressed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
Cell* cell = cx->nursery().allocateBigInt(cx->zone(), thingSize);
if (cell) {
return static_cast<JS::BigInt*>(cell);
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery, and
// other heuristics can disable nursery BigInts for this zone.
if (cx->nursery().isEnabled() && cx->zone()->allocNurseryBigInts) {
return static_cast<JS::BigInt*>(
cx->nursery().allocateBigInt(cx->zone(), thingSize));
}
}
return nullptr;
}
template <AllowGC allowGC /* = CanGC */>
JS::BigInt* js::AllocateBigInt(JSContext* cx, InitialHeap heap) {
AllocKind kind = MapTypeToFinalizeKind<JS::BigInt>::kind;
size_t size = sizeof(JS::BigInt);
MOZ_ASSERT(size == Arena::thingSize(kind));
// Off-thread alloc cannot trigger GC or make runtime assertions.
if (cx->isNurseryAllocSuppressed()) {
JS::BigInt* bi =
GCRuntime::tryNewTenuredThing<JS::BigInt, NoGC>(cx, kind, size);
if (MOZ_UNLIKELY(allowGC && !bi)) {
ReportOutOfMemory(cx);
}
return bi;
}
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState<allowGC>(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap &&
cx->nursery().canAllocateBigInts() && cx->zone()->allocNurseryBigInts) {
auto bi = static_cast<JS::BigInt*>(
rt->gc.tryNewNurseryBigInt<allowGC>(cx, size, kind));
if (bi) {
return bi;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredThing<JS::BigInt, allowGC>(cx, kind, size);
}
template JS::BigInt* js::AllocateBigInt<NoGC>(JSContext* cx,
gc::InitialHeap heap);
template JS::BigInt* js::AllocateBigInt<CanGC>(JSContext* cx,
gc::InitialHeap heap);
#define DECL_ALLOCATOR_INSTANCES(allocKind, traceKind, type, sizedType, \
bgfinal, nursery, compact) \
template type* js::AllocateStringImpl<type, NoGC>(JSContext * cx, \
InitialHeap heap); \
template type* js::AllocateStringImpl<type, CanGC>(JSContext * cx, \
InitialHeap heap);
FOR_EACH_NURSERY_STRING_ALLOCKIND(DECL_ALLOCATOR_INSTANCES)
#undef DECL_ALLOCATOR_INSTANCES
template <typename T, AllowGC allowGC /* = CanGC */>
T* js::Allocate(JSContext* cx) {
static_assert(!std::is_convertible_v<T*, JSObject*>,
"must not be JSObject derived");
static_assert(
sizeof(T) >= MinCellSize,
"All allocations must be at least the allocator-imposed minimum size.");
AllocKind kind = MapTypeToFinalizeKind<T>::kind;
size_t thingSize = sizeof(T);
MOZ_ASSERT(thingSize == Arena::thingSize(kind));
if (!cx->isHelperThreadContext()) {
if (!cx->runtime()->gc.checkAllocatorState<allowGC>(cx, kind)) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredThing<T, allowGC>(cx, kind, thingSize);
}
#define DECL_ALLOCATOR_INSTANCES(allocKind, traceKind, type, sizedType, \
bgFinal, nursery, compact) \
template type* js::Allocate<type, NoGC>(JSContext * cx); \
template type* js::Allocate<type, CanGC>(JSContext * cx);
FOR_EACH_NONOBJECT_NONNURSERY_ALLOCKIND(DECL_ALLOCATOR_INSTANCES)
#undef DECL_ALLOCATOR_INSTANCES
template <typename T, AllowGC allowGC>
/* static */
T* GCRuntime::tryNewTenuredThing(JSContext* cx, AllocKind kind,
size_t thingSize) {
// Bump allocate in the arena's current free-list span.
T* t = reinterpret_cast<T*>(cx->freeLists().allocate(kind));
if (MOZ_UNLIKELY(!t)) {
// Get the next available free list and allocate out of it. This may
// acquire a new arena, which will lock the chunk list. If there are no
// chunks available it may also allocate new memory directly.
t = reinterpret_cast<T*>(refillFreeListFromAnyThread(cx, kind));
if (MOZ_UNLIKELY(!t)) {
if (allowGC) {
cx->runtime()->gc.attemptLastDitchGC(cx);
t = tryNewTenuredThing<T, NoGC>(cx, kind, thingSize);
}
if (!t) {
if (allowGC) {
ReportOutOfMemory(cx);
}
return nullptr;
}
}
}
checkIncrementalZoneState(cx, t);
gcprobes::TenuredAlloc(t, kind);
// We count this regardless of the profiler's state, assuming that it costs
// just as much to count it, as to check the profiler's state and decide not
// to count it.
cx->noteTenuredAlloc();
return t;
}
void GCRuntime::attemptLastDitchGC(JSContext* cx) {
// Either there was no memory available for a new chunk or the heap hit its
// size limit. Try to perform an all-compartments, non-incremental, shrinking
// GC and wait for it to finish.
if (cx->isHelperThreadContext()) {
return;
}
if (!lastLastDitchTime.IsNull() &&
TimeStamp::Now() - lastLastDitchTime <= tunables.minLastDitchGCPeriod()) {
return;
}
JS::PrepareForFullGC(cx);
gc(GC_SHRINK, JS::GCReason::LAST_DITCH);
waitBackgroundAllocEnd();
waitBackgroundFreeEnd();
lastLastDitchTime = mozilla::TimeStamp::Now();
}
template <AllowGC allowGC>
bool GCRuntime::checkAllocatorState(JSContext* cx, AllocKind kind) {
if (allowGC) {
if (!gcIfNeededAtAllocation(cx)) {
return false;
}
}
#if defined(JS_GC_ZEAL) || defined(DEBUG)
MOZ_ASSERT_IF(cx->zone()->isAtomsZone(),
kind == AllocKind::ATOM || kind == AllocKind::FAT_INLINE_ATOM ||
kind == AllocKind::SYMBOL || kind == AllocKind::JITCODE ||
kind == AllocKind::SCOPE);
MOZ_ASSERT_IF(!cx->zone()->isAtomsZone(),
kind != AllocKind::ATOM && kind != AllocKind::FAT_INLINE_ATOM);
MOZ_ASSERT_IF(cx->zone()->isSelfHostingZone(),
!rt->parentRuntime && !selfHostingZoneFrozen);
MOZ_ASSERT(!JS::RuntimeHeapIsBusy());
#endif
// Crash if we perform a GC action when it is not safe.
if (allowGC && !cx->suppressGC) {
cx->verifyIsSafeToGC();
}
// For testing out of memory conditions
if (js::oom::ShouldFailWithOOM()) {
// If we are doing a fallible allocation, percolate up the OOM
// instead of reporting it.
if (allowGC) {
ReportOutOfMemory(cx);
}
return false;
}
return true;
}
inline bool GCRuntime::gcIfNeededAtAllocation(JSContext* cx) {
#ifdef JS_GC_ZEAL
if (needZealousGC()) {
runDebugGC();
}
#endif
// Invoking the interrupt callback can fail and we can't usefully
// handle that here. Just check in case we need to collect instead.
if (cx->hasAnyPendingInterrupt()) {
gcIfRequested();
}
return true;
}
template <typename T>
/* static */
void GCRuntime::checkIncrementalZoneState(JSContext* cx, T* t) {
#ifdef DEBUG
if (cx->isHelperThreadContext() || !t) {
return;
}
TenuredCell* cell = &t->asTenured();
Zone* zone = cell->zone();
if (zone->isGCMarking() || zone->isGCSweeping()) {
MOZ_ASSERT(cell->isMarkedBlack());
} else {
MOZ_ASSERT(!cell->isMarkedAny());
}
#endif
}
TenuredCell* js::gc::AllocateCellInGC(Zone* zone, AllocKind thingKind) {
TenuredCell* cell = zone->arenas.allocateFromFreeList(thingKind);
if (!cell) {
AutoEnterOOMUnsafeRegion oomUnsafe;
cell = GCRuntime::refillFreeListInGC(zone, thingKind);
if (!cell) {
oomUnsafe.crash(ChunkSize, "Failed not allocate new chunk during GC");
}
}
return cell;
}
// /////////// Arena -> Thing Allocator //////////////////////////////////////
void GCRuntime::startBackgroundAllocTaskIfIdle() {
AutoLockHelperThreadState lock;
if (!allocTask.wasStarted(lock)) {
// Join the previous invocation of the task. This will return immediately
// if the thread has never been started.
allocTask.joinWithLockHeld(lock);
allocTask.startWithLockHeld(lock);
}
}
/* static */
TenuredCell* GCRuntime::refillFreeListFromAnyThread(JSContext* cx,
AllocKind thingKind) {
MOZ_ASSERT(cx->freeLists().isEmpty(thingKind));
if (!cx->isHelperThreadContext()) {
return refillFreeListFromMainThread(cx, thingKind);
}
return refillFreeListFromHelperThread(cx, thingKind);
}
/* static */
TenuredCell* GCRuntime::refillFreeListFromMainThread(JSContext* cx,
AllocKind thingKind) {
// It should not be possible to allocate on the main thread while we are
// inside a GC.
MOZ_ASSERT(!JS::RuntimeHeapIsBusy(), "allocating while under GC");
return cx->zone()->arenas.refillFreeListAndAllocate(
cx->freeLists(), thingKind, ShouldCheckThresholds::CheckThresholds);
}
/* static */
TenuredCell* GCRuntime::refillFreeListFromHelperThread(JSContext* cx,
AllocKind thingKind) {
// A GC may be happening on the main thread, but zones used by off thread
// tasks are never collected.
Zone* zone = cx->zone();
MOZ_ASSERT(!zone->wasGCStarted());
return zone->arenas.refillFreeListAndAllocate(
cx->freeLists(), thingKind, ShouldCheckThresholds::CheckThresholds);
}
/* static */
TenuredCell* GCRuntime::refillFreeListInGC(Zone* zone, AllocKind thingKind) {
// Called by compacting GC to refill a free list while we are in a GC.
MOZ_ASSERT(JS::RuntimeHeapIsCollecting());
MOZ_ASSERT_IF(!JS::RuntimeHeapIsMinorCollecting(),
!zone->runtimeFromMainThread()->gc.isBackgroundSweeping());
return zone->arenas.refillFreeListAndAllocate(
zone->arenas.freeLists(), thingKind,
ShouldCheckThresholds::DontCheckThresholds);
}
TenuredCell* ArenaLists::refillFreeListAndAllocate(
FreeLists& freeLists, AllocKind thingKind,
ShouldCheckThresholds checkThresholds) {
MOZ_ASSERT(freeLists.isEmpty(thingKind));
JSRuntime* rt = runtimeFromAnyThread();
mozilla::Maybe<AutoLockGCBgAlloc> maybeLock;
// See if we can proceed without taking the GC lock.
if (concurrentUse(thingKind) != ConcurrentUse::None) {
maybeLock.emplace(rt);
}
ArenaList& al = arenaList(thingKind);
Arena* arena = al.takeNextArena();
if (arena) {
// Empty arenas should be immediately freed.
MOZ_ASSERT(!arena->isEmpty());
return freeLists.setArenaAndAllocate(arena, thingKind);
}
// Parallel threads have their own ArenaLists, but chunks are shared;
// if we haven't already, take the GC lock now to avoid racing.
if (maybeLock.isNothing()) {
maybeLock.emplace(rt);
}
Chunk* chunk = rt->gc.pickChunk(maybeLock.ref());
if (!chunk) {
return nullptr;
}
// Although our chunk should definitely have enough space for another arena,
// there are other valid reasons why Chunk::allocateArena() may fail.
arena = rt->gc.allocateArena(chunk, zone_, thingKind, checkThresholds,
maybeLock.ref());
if (!arena) {
return nullptr;
}
MOZ_ASSERT(al.isCursorAtEnd());
al.insertBeforeCursor(arena);
return freeLists.setArenaAndAllocate(arena, thingKind);
}
inline TenuredCell* FreeLists::setArenaAndAllocate(Arena* arena,
AllocKind kind) {
#ifdef DEBUG
auto old = freeLists_[kind];
if (!old->isEmpty()) {
old->getArena()->checkNoMarkedFreeCells();
}
#endif
FreeSpan* span = arena->getFirstFreeSpan();
freeLists_[kind] = span;
if (MOZ_UNLIKELY(arena->zone->wasGCStarted())) {
arena->arenaAllocatedDuringGC();
}
TenuredCell* thing = span->allocate(Arena::thingSize(kind));
MOZ_ASSERT(thing); // This allocation is infallible.
return thing;
}
void Arena::arenaAllocatedDuringGC() {
// Ensure that anything allocated during the mark or sweep phases of an
// incremental GC will be marked black by pre-marking all free cells in the
// arena we are about to allocate from.
if (zone->needsIncrementalBarrier() || zone->isGCSweeping()) {
for (ArenaFreeCellIter iter(this); !iter.done(); iter.next()) {
TenuredCell* cell = iter.getCell();
MOZ_ASSERT(!cell->isMarkedAny());
cell->markBlack();
}
}
}
void GCRuntime::setParallelAtomsAllocEnabled(bool enabled) {
// This can only be changed on the main thread otherwise we could race.
MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
MOZ_ASSERT(enabled == rt->hasHelperThreadZones());
atomsZone->arenas.setParallelAllocEnabled(enabled);
}
void ArenaLists::setParallelAllocEnabled(bool enabled) {
MOZ_ASSERT(zone_->isAtomsZone());
static const ConcurrentUse states[2] = {ConcurrentUse::None,
ConcurrentUse::ParallelAlloc};
for (auto kind : AllAllocKinds()) {
MOZ_ASSERT(concurrentUse(kind) == states[!enabled]);
concurrentUse(kind) = states[enabled];
}
}
// /////////// Chunk -> Arena Allocator //////////////////////////////////////
bool GCRuntime::wantBackgroundAllocation(const AutoLockGC& lock) const {
// To minimize memory waste, we do not want to run the background chunk
// allocation if we already have some empty chunks or when the runtime has
// a small heap size (and therefore likely has a small growth rate).
return allocTask.enabled() &&
emptyChunks(lock).count() < tunables.minEmptyChunkCount(lock) &&
(fullChunks(lock).count() + availableChunks(lock).count()) >= 4;
}
Arena* GCRuntime::allocateArena(Chunk* chunk, Zone* zone, AllocKind thingKind,
ShouldCheckThresholds checkThresholds,
const AutoLockGC& lock) {
MOZ_ASSERT(chunk->hasAvailableArenas());
// Fail the allocation if we are over our heap size limits.
if ((checkThresholds != ShouldCheckThresholds::DontCheckThresholds) &&
(heapSize.bytes() >= tunables.gcMaxBytes()))
return nullptr;
Arena* arena = chunk->allocateArena(this, zone, thingKind, lock);
zone->gcHeapSize.addGCArena();
// Trigger an incremental slice if needed.
if (checkThresholds != ShouldCheckThresholds::DontCheckThresholds) {
maybeAllocTriggerZoneGC(zone);
}
return arena;
}
Arena* Chunk::allocateArena(GCRuntime* gc, Zone* zone, AllocKind thingKind,
const AutoLockGC& lock) {
Arena* arena = info.numArenasFreeCommitted > 0 ? fetchNextFreeArena(gc)
: fetchNextDecommittedArena();
arena->init(zone, thingKind, lock);
updateChunkListAfterAlloc(gc, lock);
return arena;
}
inline void GCRuntime::updateOnFreeArenaAlloc(const ChunkInfo& info) {
MOZ_ASSERT(info.numArenasFreeCommitted <= numArenasFreeCommitted);
--numArenasFreeCommitted;
}
Arena* Chunk::fetchNextFreeArena(GCRuntime* gc) {
MOZ_ASSERT(info.numArenasFreeCommitted > 0);
MOZ_ASSERT(info.numArenasFreeCommitted <= info.numArenasFree);
Arena* arena = info.freeArenasHead;
info.freeArenasHead = arena->next;
--info.numArenasFreeCommitted;
--info.numArenasFree;
gc->updateOnFreeArenaAlloc(info);
return arena;
}
Arena* Chunk::fetchNextDecommittedArena() {
MOZ_ASSERT(info.numArenasFreeCommitted == 0);
MOZ_ASSERT(info.numArenasFree > 0);
unsigned offset = findDecommittedArenaOffset();
info.lastDecommittedArenaOffset = offset + 1;
--info.numArenasFree;
decommittedArenas.unset(offset);
Arena* arena = &arenas[offset];
MarkPagesInUseSoft(arena, ArenaSize);
arena->setAsNotAllocated();
return arena;
}
/*
* Search for and return the next decommitted Arena. Our goal is to keep
* lastDecommittedArenaOffset "close" to a free arena. We do this by setting
* it to the most recently freed arena when we free, and forcing it to
* the last alloc + 1 when we allocate.
*/
uint32_t Chunk::findDecommittedArenaOffset() {
/* Note: lastFreeArenaOffset can be past the end of the list. */
for (unsigned i = info.lastDecommittedArenaOffset; i < ArenasPerChunk; i++) {
if (decommittedArenas.get(i)) {
return i;
}
}
for (unsigned i = 0; i < info.lastDecommittedArenaOffset; i++) {
if (decommittedArenas.get(i)) {
return i;
}
}
MOZ_CRASH("No decommitted arenas found.");
}
// /////////// System -> Chunk Allocator /////////////////////////////////////
Chunk* GCRuntime::getOrAllocChunk(AutoLockGCBgAlloc& lock) {
Chunk* chunk = emptyChunks(lock).pop();
if (!chunk) {
chunk = Chunk::allocate(this);
if (!chunk) {
return nullptr;
}
MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
}
if (wantBackgroundAllocation(lock)) {
lock.tryToStartBackgroundAllocation();
}
return chunk;
}
void GCRuntime::recycleChunk(Chunk* chunk, const AutoLockGC& lock) {
AlwaysPoison(&chunk->trailer, JS_FREED_CHUNK_PATTERN, sizeof(ChunkTrailer),
MemCheckKind::MakeNoAccess);
emptyChunks(lock).push(chunk);
}
Chunk* GCRuntime::pickChunk(AutoLockGCBgAlloc& lock) {
if (availableChunks(lock).count()) {
return availableChunks(lock).head();
}
Chunk* chunk = getOrAllocChunk(lock);
if (!chunk) {
return nullptr;
}
chunk->init(this);
MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
MOZ_ASSERT(chunk->unused());
MOZ_ASSERT(!fullChunks(lock).contains(chunk));
MOZ_ASSERT(!availableChunks(lock).contains(chunk));
availableChunks(lock).push(chunk);
return chunk;
}
BackgroundAllocTask::BackgroundAllocTask(GCRuntime* gc, ChunkPool& pool)
: GCParallelTask(gc),
chunkPool_(pool),
enabled_(CanUseExtraThreads() && GetCPUCount() >= 2) {}
void BackgroundAllocTask::run() {
TraceLoggerThread* logger = TraceLoggerForCurrentThread();
AutoTraceLog logAllocation(logger, TraceLogger_GCAllocation);
AutoLockGC lock(gc);
while (!cancel_ && gc->wantBackgroundAllocation(lock)) {
Chunk* chunk;
{
AutoUnlockGC unlock(lock);
chunk = Chunk::allocate(gc);
if (!chunk) {
break;
}
chunk->init(gc);
}
chunkPool_.ref().push(chunk);
}
}
/* static */
Chunk* Chunk::allocate(GCRuntime* gc) {
Chunk* chunk = static_cast<Chunk*>(MapAlignedPages(ChunkSize, ChunkSize));
if (!chunk) {
return nullptr;
}
gc->stats().count(gcstats::COUNT_NEW_CHUNK);
return chunk;
}
void Chunk::init(GCRuntime* gc) {
/* The chunk may still have some regions marked as no-access. */
MOZ_MAKE_MEM_UNDEFINED(this, ChunkSize);
/*
* Poison the chunk. Note that decommitAllArenas() below will mark the
* arenas as inaccessible (for memory sanitizers).
*/
Poison(this, JS_FRESH_TENURED_PATTERN, ChunkSize,
MemCheckKind::MakeUndefined);
/*
* We clear the bitmap to guard against JS::GCThingIsMarkedGray being called
* on uninitialized data, which would happen before the first GC cycle.
*/
bitmap.clear();
/*
* Decommit the arenas. We do this after poisoning so that if the OS does
* not have to recycle the pages, we still get the benefit of poisoning.
*/
decommitAllArenas();
/* Initialize the chunk info. */
info.init();
new (&trailer) ChunkTrailer(gc->rt);
/* The rest of info fields are initialized in pickChunk. */
}
void Chunk::decommitAllArenas() {
decommittedArenas.clear(true);
MarkPagesUnusedSoft(&arenas[0], ArenasPerChunk * ArenaSize);
info.freeArenasHead = nullptr;
info.lastDecommittedArenaOffset = 0;
info.numArenasFree = ArenasPerChunk;
info.numArenasFreeCommitted = 0;
}