Etalon is a reconfigurable datacenter network (RDCN) emulator designed to run on public testbeds. We define an RDCN to be a datacenter network designed around adding and removing circuits in realtime to add bandwidth to portions of the network on demand. This has been seen in many research papers with a variety of technologies: e.g., 60GHz wireless (Flyways), optical circuit switching (c-Through, Helios, Mordia, etc.), or free-space optics (FireFly, ProjecToR). Some of these proposals incorporate a packet switch, which we model as well. With Etalon, we wish to provide a platform where repeatable end-to-end experiments on RDCN can be emulated at scale.
Etalon emulates a datacenter by running multiple virtual hosts ("vhosts"; Docker
containers) on different physical machines. Physical machines represent
datacenter "racks" in Etalon. vhosts on the same physical machine connect to the
physical NIC using a virtualized switch (macvlan via docker), using tc
to
limit vhost link bandwidth (similar to a host to ToR link in a real datacenter).
A separate physical machine emulates the reconfigurable switch in Etalon. It does this using a software switch (Click). Within the software switch, we emulate ToR VOQs, a circuit switch, and a packet switch. All parameters for these elements are adjustable (e.g., VOQ length, circuit switch reconfiguration penalty, link bandwidths/delays, etc.).
Each "rack" is connected to the software switch via a physical switch in the testbed (e.g., a 40Gbps switch in CloudLab's Apt cluster). We also assume a second (control) network connects each "rack" and the software switch for convenience.
Finally, to allow our system to scale beyond a single 40Gbps link, we use time
dilation (libVT
) to emulate many 40Gbps links simultaneously.
See our paper for more information.
Coming soon...
After finishing the initial setup, creating an experiment, running it, and collecting the results are all handled by our experiment framework, run on the software switch machine.
The basic workflow for running an experiment on Etalon is:
-
On the software switch machine, launch
/etalon/bin/click_startup.sh
. -
In another window on the software switch machine, launch an experiment file script (e.g.,
cd /etalon/experiments/buffers; ./buffers.py
).
The experiment file script will build a docker image (on the software switch machine), push the image to all of the "rack" machines, launch a "rack" of vhosts, run the experiment (e.g., running 16 flows for 40 seconds), and then collect the results (e.g., logs), and tar them. These logs can be processed by graphing scripts which we provide (see Graphing the Results below).
See experiments/buffers/buffers.py
and
experiments/buffers/buffer_common.py
for an example of an experiment file
script. Generally, an experiment file script will call
initializeExperiment(image)
, loop through some switch configurations
(e.g., changing ToR VOQ buffer sizes) while running some benchmark on each
configuration (e.g., flowgrind or dfsio), and then call
finishExperiment()
. The resulting tarball will always be in the directory
where the script was launched from, and be named based on the timestamp at
launch. finishExperiment()
prints out this timestamp to make it easy to
distinguish multiple resulting tar files.
After running an experiment, there is a tar file with the results on the software switch machine. We assume that most users will want the option to archive the raw result data on their local machine, so we assume graphing scripts will be run on the local machine, not on the software switch machine.
To graph results:
-
Copy the results tar file to your local machine. The file
sxp.py
inetalon/bin
can simplify this. Assuming youretalon/etc/handles
file is setup correctly,sxp.py
will try toscp
a results file from the foldersexperiments/buffers/
,experiments/adu
, orexperiment/hdfs
on the software switch machine to the local machine, given some timestamp. e.g.,./sxp.py 1519494787
will look in those directories for a tar file with 1519494787 in its name. -
Untar the results file, into a new results folder (macOS' built in unarchiver will do this automatically, on Linux you'll need to create a folder first and put the tar in that folder and unarchive).
-
Call a graphing script with the results folder as an argument , e.g.,
cd experiments/buffers/ ; ./buffer_graphs.py ../../bin/1519494787-buffers
. This expects a folder namedgraphs
to exist in the current folder.
After running this you should have some graphs in a subfolder called
graphs
. We include all graphing scripts used to create the graphs in our
paper. If you wish to create other graphs, experiments/parse_logs.py
will
likely be useful.
Read the README.md in each subfolder for more information.
-
bin
: various runables (e.g., performance tuning scripts, click script generation, installation scripts). -
click-etalon
: our software switch emulation; a modified version of Click. -
etc
: various configurations scripts. -
experiments
: experiment framework and various example experiment file scripts. -
flowgrind-etalon
: our flow generator; a modified version of flowgrind. -
libADU
: an interposition library that tells the software switch how much data is waiting in the endhost stack. -
libVT
: a virtual time interposition library ("time dilation") that we use to scale the number of links. -
reHDFS
: our modified HDFS write replica placement algorithm for reconfigurable datacenter networks. -
reTCP
: our TCP congestion control variant for reconfigurable datacenter networks. -
rpycd
: a daemon that runs on each "rack" that allows the software switch machine to setup experiments on each "rack". -
vhost
: code and supporting files for building the vhost image (docker image).
We'd be happy to hear if you're using our emulator in your research. Let us know
if you have any questions, comments, or feedback by sending an email to
mukerjee at cs cmu edu
.