0. Full Stack Data Scientist Tutorials Collection: https://www.kdnuggets.com/2021/09/path-full-stack-data-science.html
1. Python : https://lnkd.in/grD8XUS6
2. Pandas : https://lnkd.in/g4yTJ7CP
3. NumPy : https://lnkd.in/gg9Uw-km
4. Matplotlib : https://lnkd.in/gahrGicD
5. Seaborn : https://lnkd.in/gcu4UKpw
6. Scikit-learn : https://lnkd.in/gGfkNu5i
7. TensorFlow : https://lnkd.in/g3fw3uRV
8. Keras : https://lnkd.in/gfPTfbgg
9. PyTorch : https://ow.ly/6TQI50PjRA5
10. SQL : https://lnkd.in/gnwe4qcb
11. GeoPandas : https://lnkd.in/d-hnRaJt
12. Git : https://lnkd.in/gyzhztvH
13. AWS : https://bit.ly/3ZQWMS1
14. Azure : https://bit.ly/42f4N4V
15. Google Cloud Platform : https://bit.ly/3JJADzv
16. Docker : https://bit.ly/3Lt2zJe
17. Kubernetes : https://lnkd.in/gjXCT7Mb
18. Linux Command Line : https://bit.ly/3FtcTgw
19. Jupyter Notebook : https://lnkd.in/g7cPmgHQ
20. Data Wrangling : https://bit.ly/3TiMibP
21. Data Visualization : https://lnkd.in/gQ52Jd_J
22. Statistical Inference : https://lnkd.in/grNXVQh5
23. Probability : https://lnkd.in/gvnWCphc
24. Linear Algebra : https://lnkd.in/gty6XpVF
25. Calculus : https://lnkd.in/gjhsmsxu
26. Time Series : https://bit.ly/3Fvuep4
27. NLP : https://bit.ly/3Fvursm
28. Neural Network : https://lnkd.in/gThs2AAp
29. Deep Learning : https://lnkd.in/gVbSPae2
30. Machine Learning : https://bit.ly/3mZ5Wh3
31. Apache Spark : https://lnkd.in/ge7Rj-Yr
32. Hadoop : https://bit.ly/3Lq34DR
33. Big-O Notation : https://lnkd.in/gfYqM8WU
34. Regular Expression : https://lnkd.in/gE9kZTZW
35. Unix/Linux Permissions : https://bit.ly/3ZUfwA8
36. Python String Formatting : https://lnkd.in/d4s3W779
37. Flask : https://lnkd.in/gGzbSTgU
38. Django : https://lnkd.in/grZcWz8y
39. Plotly : https://lnkd.in/d8SKxbdA
40. PostgreSQL : https://lnkd.in/gzfiW7zB
41. MySQL : https://lnkd.in/g4JnPVTe
42. MongoDB : https://lnkd.in/gHc4F4ER
43. TensorFlow Probability Cheat Sheet : https://lnkd.in/gr3bgDGP
44. OpenAI GPT-3 Documentation : https://lnkd.in/gawB_SC9
45. GPT-3 API Reference : https://lnkd.in/gtCGZvX8
46. SciPy : https://ow.ly/JYCN50PjRG7
47. Chat GPT Cheat Sheet : https://lnkd.in/e43cDB9q
48. Colors in dataviz : https://lnkd.in/dWU6WkhU
49. Geospatial data science in Python : https://lnkd.in/gCbqNXFn
50. Network analysis : https://ow.ly/fYm550PjRyf
David Munoz Tord
Make sure you are familiar with the basics of git and that you know how to “fork” a repository to your personal computer and “push” modifications to github.
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
https://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html
If you encounter issues during the homework you are encouraged to speak about it (that IS one of the main goal of this workshop!) However make it simpler and available to others we privilegy that you juste create an “issue” -> https://docs.github.com/en/github/managing-your-work-on-github/creating-an-issue
Basics (online - free - active coding - videos) https://www.mathworks.com/learn/tutorials/matlab-onramp.html
https://drive.switch.ch/index.php/s/ZYGtqDasSgNPo3b
https://drive.switch.ch/index.php/s/dThUOtWJevWgsKz
https://drive.switch.ch/index.php/s/pfo9GtrYiyKLk5x
https://learn.datacamp.com/courses/free-introduction-to-r
https://beanumber.github.io/sds192/schedule.html
https://campus.datacamp.com/courses/statistical-inference-and-data-analysis/
https://www.learnpython.org/en/
https://drive.switch.ch/index.php/s/qdbgPKqQ5xljYoA
https://drive.switch.ch/index.php/s/X6mlUhVvdQcEw6S
https://github.com/NIDS2020-instructor?tab=repositories