forked from nebogeo/coding-with-knots
-
Notifications
You must be signed in to change notification settings - Fork 1
/
quipupixel.py
executable file
·456 lines (389 loc) · 13.7 KB
/
quipupixel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#!/usr/bin/env python
# Quipu database to dot graphs
# Copyright (C) 2015 Dave Griffiths, Florian Zeeh
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from PIL import Image
from PIL import ImageDraw
import numpy as np
from matplotlib import pyplot as plt
import sys
import os
import xlrd
from quipulib import *
import entropy
import operator
_NUMERALS = '0123456789abcdefABCDEF'
_HEXDEC = {v: int(v, 16) for v in (x+y for x in _NUMERALS for y in _NUMERALS)}
_max_entropy = 0
_min_entropy = 999
max_height = 80
def reset_entropy():
global _max_entropy
global _min_entropy
_max_entropy = 0
_min_entropy = 999
def rgb(triplet):
return _HEXDEC[triplet[0:2]], _HEXDEC[triplet[2:4]], _HEXDEC[triplet[4:6]]
def empty_collect():
return {
"ply":[],
"attach":[],
"length":[],
"colours":[],
"knot_value":[],
"knot_type":[],
"knot_position":[],
"knot_spin":[]
}
## pendant tree class
class pendant:
def __init__(self,pid,ply,attach,knots,length,colours,value):
self.pid = pid
self.children = []
self.ply = ply
self.attach = attach
self.knots = knots
if length=="": self.length=0
else: self.length = float(length)
if self.length==0: self.length=5; # default
self.colours = []
for c in colours:
# convert to triples
self.colours.append(rgb(c[2:-1]))
self.value = value
self.entropy = -1
def add(self,child):
self.children.append(child)
def find(self,pid):
if self.pid==pid: return self
else:
for p in self.children:
f = p.find(pid)
if f: return f
return False
def calc_entropy(self):
collect=empty_collect()
self.as_raw(collect)
self.entropy=0
for i in collect.values():
self.entropy += entropy.calc(i)
global _min_entropy
global _max_entropy
if self.entropy<_min_entropy: _min_entropy=self.entropy
if self.entropy>_max_entropy: _max_entropy=self.entropy
for p in self.children:
p.calc_entropy()
def safe_plot(self,pixels,x,y,c):
if x>0 and x<pixels.shape[1] and y>0 and y<pixels.shape[0]:
if self.entropy!=-1:
v=(self.entropy-_min_entropy)/(_max_entropy-_min_entropy)
v*=225
v+=25
pixels[y,x]=(v,v,v)
else:
pixels[y,x]=c
# slice the data for entropy calc
def as_raw(self, collect):
collect["ply"]+=[self.ply]
collect["attach"]+=[self.attach]
#collect["length"]+=[self.length]
collect["colours"]+=self.colours
collect["knot_value"]+=map(lambda k: k.value, self.knots)
collect["knot_type"]+=map(lambda k: k.type, self.knots)
#collect["knot_position"]+=map(lambda k: k.position, self.knots)
collect["knot_spin"]+=map(lambda k: k.spin, self.knots)
for c in self.children:
c.as_raw(collect)
# produce a json string of this pendant
def as_json(self,depth):
out=""
header=""
pheader=""
for i in range(0,depth-1): pheader+=" "
for i in range(0,depth): header+=" "
out+=pheader+"{ \n"
out+=header+"\"id\": \""+self.pid+"\", \"ply\": \""+self.ply+"\", \"attach\": \""+self.attach+"\", \n"
cc = ""
for i,c in enumerate(self.colours):
cc+="["+str(c[0])+", "+str(c[1])+", "+str(c[2])+"]"
if i!=len(self.colours)-1: cc+=", "
out+=header+"\"colours\": ["+cc+"],\n"
if (len(self.knots)==0):
out+=header+"\"knots\": [],"
else:
out+=header+"\"knots\": [\n"
for i,k in enumerate(self.knots):
out+=header+"{ \"value\": "+str(k.value)+", \"type\": \""+k.type+"\", \"position\": "+str(k.position)+", \"spin\": \""+k.spin+"\" }"
if i==len(self.knots)-1: out+="\n"
else: out+=",\n"
out+=header+"],\n"
if (len(self.children)==0):
out+=header+"\"children\": []\n"
else:
out+=header+"\"children\": [\n"
for i,p in enumerate(self.children):
out+=p.as_json(depth+2)
if i==len(self.children)-1: out+="\n"
else: out+=",\n"
out+=header+"]\n"
out+=pheader+"}"
return out
def num_pendants(self):
count = 1
for p in self.children:
count+=p.num_pendants()
return count
def longest_pendant(self,depth):
length = self.length+depth*3 # account for heirarchical position
for p in self.children:
l = p.longest_pendant(depth+1)
if l>length: length=l
return length
def render_data(self,pixels,x,y):
for i in range(0,int(self.length)):
self.safe_plot(pixels,x,y+i,self.colours[i%len(self.colours)])
kcol = self.colours[0]
for k in self.knots:
i = int(k.position)
v = 25+k.value*25
c = (255,255,0)
if k.type=="S": c = (v,0,0)
if k.type=="L": c = (0,v,0)
if k.type=="E": c = (0,0,v)
self.safe_plot(pixels,x+1,y+i,c)
def render(self,pixels,sx,x,y):
self.render_data(pixels,x,y)
sx = x # where we started from
tx = sx
for p in self.children:
for i in range(tx,x+3):
self.safe_plot(pixels,i,y+3,p.colours[i%len(p.colours)])
x+=3
tx+=3
tx,x=p.render(pixels,tx,x,y+3)
return (sx,x)
########################################################
# just store the width and height for box fitting
def prerender(primary,filename,store):
h = int(primary.longest_pendant(0))+10
w = primary.num_pendants()*3
h = min(h,max_height)
store[filename] = [0,0,w,h]
# render a quipu, save the image and return it
def render(primary,filename):
h = int(primary.longest_pendant(0))+10;
h = min(h,max_height)
im = Image.new("RGB", (primary.num_pendants()*3,h), "white")
pixels=np.array(im)
primary.render(pixels,0,0,0)
# plt.imshow(pixels)
# plt.show()
# im.putdata(pixels)
image = Image.fromarray(np.uint8(pixels))
d_usr = ImageDraw.Draw(image)
qname = os.path.basename(filename)[:-4]
d_usr = d_usr.text((0,h-10),qname,(100,100,100))
print("saving: pixel/"+qname+".png")
image.save("pixel/"+qname+".png")
return image
# convert a database spreadsheet into a dot file for visualisation
def parse_to_pendant_tree(quipu):
primary = pendant("primary","?","?",[],0,["\"#ffffff\""],0)
# skip the gumpf at the top, start on the 6th line
for curr_row in range(6,quipu.nrows):
# get the stuff from the row
pid = quipu.cell_value(curr_row, 0)
if quipu.cell_type(curr_row, 0)==2: # convert a number to text
pid = str(int(pid))
ply = quipu.cell_value(curr_row, 1)
attach = quipu.cell_value(curr_row, 2)
knots = parse_knots(quipu.cell_value(curr_row, 3))
length = quipu.cell_value(curr_row, 4)
if quipu.cell_type(curr_row, 4)==2: # convert a number to text
length = str(length)
colours = parse_colour(quipu.cell_value(curr_row, 7))
value = quipu.cell_value(curr_row, 8)
p = pendant(pid,ply,attach,knots,length,colours,value)
if has_parent(pid):
ppid = get_parent_pendant(pid)
parent=primary.find(ppid)
if parent:
parent.add(p)
else:
print("parent "+ppid+" not found!")
primary.add(p)
else:
primary.add(p)
return primary
# box fitting algo for the big image - store in rows, and
# look for rows with enough space in, make new rows where
# required
def find_row(rows,w,maxw):
for i,r in enumerate(rows):
if (r+w+20)<maxw:
rows[i]+=w+20
return i
rows.append(0)
return len(rows)-1
def fit(store):
widest=1750 # max width of a row
rows = [0]
for r in store.values():
row = find_row(rows,r[2],widest)
r[0]=rows[row]-r[2] # store the position
r[1]=row*max_height
return (widest,len(rows)*max_height)
# create the box fit coordinates using width/heights
def prerun(filename,store):
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
except Exception:
print "problem"
return False
primary = parse_to_pendant_tree(quipu)
#primary.calc_entropy()
prerender(primary,filename,store)
return store
# actually create the image
def run(filename):
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
except Exception:
print "problem"
return False
primary = parse_to_pendant_tree(quipu)
reset_entropy()
primary.calc_entropy()
return render(primary,filename)
# calculate separate entropy values for each type of data
def global_entropy_sliced(filenames):
collect={
"ply":[],
"attach":[],
"length":[],
"colours":[],
"knot_value":[],
"knot_type":[],
"knot_position":[],
"knot_spin":[]
}
for filename in filenames:
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
primary = parse_to_pendant_tree(quipu)
primary.as_raw(collect)
except Exception:
pass
for key,value in collect.items():
print(key+" "+str(entropy.calc(value)))
# calculate separate entropy values for each type of data
def global_entropy_comp(filenames):
cache = {}
for filename in filenames:
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
primary = parse_to_pendant_tree(quipu)
primary.calc_entropy()
cache[filename]=primary.entropy
except Exception:
pass
sorted_cache = sorted(cache.items(), key=operator.itemgetter(1))
for item in sorted_cache:
print(item)
plt.rc('xtick', labelsize=6)
ind = np.arange(len(sorted_cache)) # the x locations for the groups
label_ind = np.arange(len(sorted_cache)/2)*2 # the x locations for the groups
fig,ax = plt.subplots()
rects = ax.plot(ind, map(lambda i: i[1], sorted_cache))
ax.set_ylabel('entropy bits')
ax.set_title('entropy per quipu (all data)')
ax.set_xticks(label_ind)
labels = []
for i,v in enumerate(sorted_cache):
if i%2==0: labels.append(os.path.basename(v[0])[:-4])
ax.set_xticklabels(labels, rotation="vertical")
plt.show()
# calculate separate entropy values for each type of data
def pairwise_entropy_comp(filenames):
x = []
y = []
l = []
for filename in filenames:
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
except Exception:
continue
primary = parse_to_pendant_tree(quipu)
collect = empty_collect()
primary.as_raw(collect)
x+=[entropy.calc(collect["ply"])]
y+=[entropy.calc(collect["knot_type"])]
l+=[os.path.basename(filename)[:-4]]
plt.xlabel('pendant ply entropy (bits)')
plt.ylabel('knot type entropy (bits)')
plt.scatter(x, y)
for i, txt in enumerate(l):
plt.annotate(txt, (x[i],y[i]), fontsize=6)
plt.show()
# run over all quipus and paste them in the big image
def batch_run(filenames):
store = {}
for filename in filenames:
prerun(filename,store)
size = fit(store)
im = Image.new("RGB", size, "white")
for filename in filenames:
if filename in store:
qim = run(filename)
im.paste(qim,(store[filename][0],store[filename][1]))
print(len(store))
im.save("comp.png")
# calculate separate entropy values for each type of data
def json_save(filenames):
for filename in filenames:
# open the spreadsheet
try:
workbook = xlrd.open_workbook(filename)
quipu = workbook.sheet_by_name('Pendant Detail')
primary = parse_to_pendant_tree(quipu)
f = open("json/"+os.path.basename(filename)[:-4]+".json","w")
f.write(primary.as_json(0))
f.close()
except Exception:
continue
# are we the script that's being run?
if __name__ == "__main__":
if sys.argv[1]=="batch":
batch_run(generate_quipu_list())
if sys.argv[1]=="sliced_entropy":
global_entropy_sliced(generate_quipu_list())
if sys.argv[1]=="global_entropy":
global_entropy_comp(generate_quipu_list())
if sys.argv[1]=="pairwise_entropy":
pairwise_entropy_comp(generate_quipu_list())
if sys.argv[1]=="json":
json_save(generate_quipu_list())
else:
run(sys.argv[1])