Skip to content

Latest commit

 

History

History
1136 lines (644 loc) · 29.7 KB

File metadata and controls

1136 lines (644 loc) · 29.7 KB
title author header-includes abstract
Abstract Algebra by Pinter, Chapter 16
Amir Taaki
- \usepackage{mathrsfs} - \usepackage{mathtools} - \usepackage{extpfeil} - \DeclareMathOperator\cis{cis} - \DeclareMathOperator\ker{ker} - \DeclareMathOperator\ord{ord} - \DeclareMathOperator\gcd{gcd} - \DeclareMathOperator\lcm{lcm}
Chapter 16 on Fundamental Homomorphism Theorem

A. Examples of FHT

Use the FHT to prove that the two given groups are isomorphic. Then display their tables.

Q1

$\mathbb{Z}5$ and $\mathbb{Z}{20} / \langle 5 \rangle$.

$$ \setcounter{MaxMatrixCols}{30} f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\ 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 \\ \end{pmatrix} $$

$$K = {0, 5, 10, 15} = \langle 5 \rangle$$

$$ f : \mathbb{Z}_{20} \underset{\langle 5 \rangle}{\relbar\joinrel\twoheadrightarrow} \mathbb{Z}_5 $$

$$ \mathbb{Z}{5} \cong \mathbb{Z}{20} / \langle 5 \rangle $$

Q2

$\mathbb{Z}3$ and $\mathbb{Z}{6} / \langle 3 \rangle$.

$$ f = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 0 & 1 & 2 \end{pmatrix} $$

$$K = {0, 3} = \langle 3 \rangle$$

$$ f : \mathbb{Z}_{6} \underset{\langle 3 \rangle}{\relbar\joinrel\twoheadrightarrow} \mathbb{Z}_3 $$

$$ \mathbb{Z}{3} \cong \mathbb{Z}{6} / \langle 3 \rangle $$

Q3

$\mathbb{Z}_2$ and $S_3 / { \epsilon, \beta, \delta }$.

$$ f = \begin{pmatrix} \epsilon & \alpha & \beta & \gamma & \delta & \kappa \\ 0 & 1 & 0 & 1 & 0 & 1 \\ \end{pmatrix} $$

$$K = { \epsilon, \beta, \delta } $$

$$ f : S_3 \underset{{ \epsilon, \beta, \delta }}{\relbar\joinrel\twoheadrightarrow} \mathbb{Z}_2 $$

$$ \mathbb{Z}_{2} \cong S_3 / { \epsilon, \beta, \delta } $$

Q4

From Chapter 3, part C (at the end):

$$ P_D = { A : A \subseteq D } $$

If $A$ and $B$ are any two sets, their symmetric difference is the set $A + B$ defined as follows:

$$ A + B = (A - B) \cup (B - A) $$

$A - B$ represents the set obtained by removing from $A$ all the elements which are in $B$.

$$ P_3 = { \varnothing, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } $$

Consider the function $f(C) = C \cap {a, b}$

$$ P_2 = { \varnothing, {a}, {b}, {a, b} } $$

The kernel is ${ \varnothing, { c } }$

Using the kernel we create the quotient cosets:

\begin{align*} K &= { \varnothing, { c } } \ &= K + { c } \ K + { a } &= { { a }, { a, c } } \ &= K + { a, c } \ K + { b } &= { { b }, { b, c } } \ &= K + { b, c } \ K + { a, b } &= { { a, b }, { a, b, c } } \ &= K + { a, b, c } \ \end{align*}

Applying the function to the cosets, we get:

\begin{align*} f(K) &= { \varnothing } \ f(K \cap { a }) &= { { a } } \ f(K \cap { b }) &= { { b } } \ f(K \cap { a, b }) &= { { a, b } } \ \end{align*}

Thus,

$$ f : P_3 \underset{{ \varnothing, { c } }}{\relbar\joinrel\twoheadrightarrow} P_2 $$

$$ P_2 \cong P_3 / { \varnothing, { c } } $$

Q5

$\mathbb{Z}_3$ and $(\mathbb{Z}_3 \times \mathbb{Z}_3) / K$ where $K = { (0, 0), (1, 1), (2, 2) }$

Consider $f: \mathbb{Z}_3 \times \mathbb{Z}_3 \rightarrow \mathbb{Z}_3$ by:

$$ f(a, b) = a - b $$

$$ \mathbb{Z}_3 \times \mathbb{Z}_3 = { (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) } $$

\begin{alignat*}{2} \bar{(0, 0)} &= K + (0, 0) &= K + (1, 1) &= K + (2, 2) \ \bar{(0, 1)} &= K + (0, 1) &= K + (1, 2) &= K + (2, 0) \ \bar{(0, 2)} &= K + (0, 2) &= K + (1, 0) &= K + (2, 1) \ \end{alignat*}

Applying the function to any element $k$ from the cosets we get:

\begin{alignat*}{2} f(0, 0) &= f(1, 1) &= f(2, 2) = 0 \ f(0, 1) &= f(1, 2) &= f(2, 0) = 2 \ f(0, 2) &= f(1, 0) &= f(2, 1) = 1 \end{alignat*}

Thus,

$$ f : \mathbb{Z}_3 \times \mathbb{Z}_3 \underset{K}{\relbar\joinrel\twoheadrightarrow} \mathbb{Z}_3 $$

$$ \mathbb{Z}_3 \cong \mathbb{Z}_3 \times \mathbb{Z}_3 / { (0, 0), (1, 1), (2, 2) } $$

B. Example of the FHT Applied to $F(\mathbb{R})$

Q1

Let $\alpha : F(\mathbb{R}) \rightarrow \mathbb{R}$ be:

$$ \alpha (f) = f(1) $$

Let $\beta : F(\mathbb{R}) \rightarrow \mathbb{R}$ be:

$$ \beta (f) = f(2) $$

Prove $\alpha$ and $\beta$ are homomorphisms from $F(\mathbb{R})$ onto $\mathbb{R}$.

Let $g, h \in F(\mathbb{R})$, then:

\begin{align*} f(g + h) &= (g + h)(1) \ &= g(1) + h(1) \end{align*}

Likewise for $\beta$

The functions are onto because the range of each function are $f(1)$ and $f(2)$ respectively.

Q2

$$ J = { f : f(1) = 0, \forall f \in F(\mathbb{R}) } $$ $$ K = { f : f(2) = 0, \forall f \in F(\mathbb{R}) } $$

The cosets of $F(\mathbb{R})$ for $\alpha$ are:

$$ J + g, \forall g \in F(\mathbb{R}) $$

And for $\beta$:

$$ K + g, \forall g \in F(\mathbb{R}) $$

Q3

For any arbitrary $g, h \in F(\mathbb{R})$ and $k_1, k_2 \in J$,

\begin{align*} f((k_1 + g) + (k_2 + h)) &= (k_1 + g + k_2 + h)(1) \ &= f(k_1 + g) + f(k_2 + h) \end{align*}

Thus $J + g$ and $K + g$ are valid quotient groups.

$J$ and $K$ have the same cardinality under $F(\mathbb{R})$ and so:

$$ F(\mathbb{R}) / J \cong F(\mathbb{R}) / K $$

C. Example of FHT with Abelian Groups

Q1

Let $a, b \in G$

$$ f(ab) = (ab)^2 $$

But $G$ is abelian, so:

\begin{align*} (ab)^2 &= a^2 b^2 \ &= f(a) f(b) \end{align*}

And $H = { x^2 : x \in G }$

So $f$ is a homomorphism of $G$ onto $H$

Q2

$ker(f)$ is defined as:

\begin{align*} K &= { x \in G : f(x) = e } \ &= { x \in G : x^2 = e } \end{align*}

Q3

$f: G \rightarrow H$ is a homomorphism of $G$ onto $H$, with a kernel K, $f : G \underset{K}{\relbar\joinrel\twoheadrightarrow} H$ So therefore,

$$ H \cong G/K $$

D. Group of Inner Automorphisms

See also the videos by Elliot724 on YouTube about automorphisms.

Q1

For $Aut(G) \subseteq S_G$, prove $Aut(G) \leq S_G$.

We must prove that $Aut(G)$ obeys the group axioms.

Definition of $Aut(G)$:

$$ Aut(G) = { f \in S_G : f(g_1 g_2) = f(g_1) f(g_2), \forall g_1, g_2 \in G } $$

Therefore for any $f_1, f_2 \in Aut(G)$, it is true that:

$$\forall g_1, g_2 \in G, f_1(f_2(g_1 g_2)) = f_1(f_2(g_1)) f_1(f_2(g_2))$$

Set obeys closure property.

Secondly there is an identity element $f_e \in S_G$ such that $f_e: g \rightarrow g, \forall g \in G$. Thus $f_e \in Aut(G)$.

Lastly $\forall f \in Aut(G), \forall g_1, g_2 \in G$, that there exists:

\begin{align*} f(\bar{g_1}) &= g_1 \ f(\bar{g_2}) &= g_2 \ \end{align*}

Because $f$ is bijective, in particular from the surjective property, we can compose elements in the domain.

\begin{align*} f(\bar{g_1} \bar{g_2}) &= f(\bar{g_1}) f(\bar{g_2}) \ &= g_1 g_2 \end{align*}

Now because know that:

$$ f^{-1}(g_1 g_2) = f^{-1}(g_1) f^{-1}(g_2) $$

Substituting in the values of $g_1$ and $g_2$, we get:

\begin{align*} f^{-1}(f(\bar{g_1} \bar{g_2})) &= f^{-1}(f(\bar{g_1})) f^{-1}(f(\bar{g_2})) \ \bar{g_1} \bar{g_2} &= \bar{g_1} \bar{g_2} \end{align*}

Thus group has an inverse.

$$ Aut(G) \leq S_G $$

Q2

$\phi_a$ denotes an inner automorphism of $G$:

$$ \text{for every } x \in G \qquad \phi_a(x) = axa^{-1} $$

Prove every inner automorphism is an automorphism of $G$.

$$ \phi_a(x) = axa^{-1} $$

Show homomorphic property:

$$ \phi_a(xy) = axya^{-1} $$

But $e = a^{-1} a$, so: $$ \phi_a(xy) = ax(a^{-1} a)ya^{-1} = \phi_a(x) \phi_a(y) $$

So $\phi_a$ is homomorphic.

Also $\phi_e(x) = x \quad \forall x \in G$

Q3

Likewise from above:

$$ \phi_a \cdot \phi_b = \phi_{ab} $$

Because $a(bxb^{-1})a^{-1} = (ab)x(ab)^{-1}$

For the inverse, we note that:

\begin{align*} \phi_a(x) \phi_b(x) &= \phi_e(x) = x \ &= (ab) x (ab)^{-1} \end{align*}

It therefore follows that the inverse automorphism of $\phi_a$ is:

$$ (\phi_a)^{-1} = \phi_{a^{-1}} $$

Q4

$I(G) = { \phi_a : a \in G }$. Prove $I(G) \leq Aut(G)$.

Closure: for any $\phi_a, \phi_b \in I(G)$, then $\phi_a \cdot \phi_b \in I(G)$ because $\phi_a \cdot \phi_b = \phi_{ab}$

Identity: $\phi_e$ is the identity because $eae^{-1} = a$, so $\phi_e \in I(G)$.

Inverses: $\forall \phi_a \in I(G)$, there is an $\phi_{a^{-1}} \in I(G)$ because $\phi_a \cdot \phi_{a^{-1}} = \phi_{a a^{-1}} = \phi_e$, thus $\phi_{a^{-1}} = (\phi_a)^{-1}$

Q5

$$ C = { a \in G : ax = xa \text{ for every } x \in G } $$

Let $a \in C$. Then for every $x \in G$:

$$ ax = xa \text{ or } axa^{-1} = x $$

Q6

Let $h: G \rightarrow I(G)$ be a function defined by $h(a) = \phi$. Prove that $h$ is a homomorphism from $G$ onto $I(G)$ and that $C$ is its kernel.

We can see that $h(ab) = \phi_{ab} = \phi_a \cdot \phi_b = h(a) h(b)$. Lastly the function is surjective (onto) because for every $\phi$, there is a corresponding $a \in G$ (possibly multiple if for example the group is abelian), so the mapping is well defined.

The kernel is defined by:

$$ K = { x \in G : f(x) = e } $$

In our case this is:

$$ K = { a \in G : h(a) = \phi_e } $$

The center is defined as:

$$ C = { a \in G : axa^{-1} = x \text{ for every } x \in G } $$

Which is also the same as writing:

$$ K = { a \in G : h(a) = \phi_e } $$

Q7

Lastly using the FHT, we note that:

$$ h : G \underset{C}{\relbar\joinrel\twoheadrightarrow} I(G) $$

$$ I(G) \cong G / C $$

E. FHT Applied to Direct Products of Groups

Q1

Let $G$ and $H$ be groups.

Suppose $J \trianglelefteq G$ and $K \trianglelefteq H$

$$f(x, y) = (Jx, Ky)$$

Assuming $x \in G$ and $y \in H$, then $Jx$ and $Ky$ form the cosets for $G$ and $H$.

That is for every value from $G$ and $H$ maps onto $(G / J) \times (H / K)$ because:

$$x \in J\bar{x} \iff Jx = J\bar{x}$$ $$y \in K\bar{y} \iff Ky = K\bar{y}$$

$$f: G \times H \rightarrow (G/J) \times (H/K)$$

Q2

$$ker f = { (x, y) \in G \times H : f(x, y) = (J, K) } = J \times K$$

Q3

$$ f : G \times H \underset{J \times K}{\relbar\joinrel\twoheadrightarrow} (G/J) \times (H/K) $$

$$ (G\times H)/(J \times K) \cong (G/J) \times (H/K) $$

F. First Isomorphism Theorem

Q1

$K \leq G, H \trianglelefteq G$

Both $H$ and $K$ are closed subgroups, so an element in both must by definition remain within $H \cap K$.

Let $h \in H \cap K$, then $\forall x \in G, xax^{-1} \in H$. This also applies to $K$. Therefore $H \cap K$ is a normal subgroup of $K$.

Q2

$HK = { xy : x \in H \text{ and } y \in K }$. Prove $HK$ is a subgroup of $G$.

Let $a, b \in HK$, then $ab = (h_1 k_1)(h_2 k_2) = h_1 (k_1 h_2 k_1^{-1}) k_1 k_2$ which is another element in $HK$.

Q3

$H$ is a normal subgroup of $HK$.

Since $HK$ is a subgroup of $G$ then every element of $H$ conjugated with elements from $HK$ also lay within $H$.

$H \trianglelefteq HK$

Q4

Let $x \in HK$ then $x = hk$ for some $h \in H, k \in K$. Form the coset $Hx = H(hk) = Hk$.

Thus $HK/H$ may be written as $Hk$ for some $k \in K$.

Q5

Prove $f(k) = Hk$ is a homomorphism $f: K \rightarrow HK/H$, and its kernel is $H \cap K$

Since $Hk_1 = Hk_2$ for $k_1, k_2$ in the same coset, then any member of the quotient group $HK/H$ is equal to $H$ multiplied by a representative from that member.

To find the kernel, we need every $x \in K$ such that $f(x) = H$, the identity coset. That is $x \in H$. But since we are mapping from $K$, then $x \in K$ and $x \in H$. In other words, $ker f = H \cap K$.

Q6

$$ f : K \underset{H \cap K}{\relbar\joinrel\twoheadrightarrow} HK/H $$

$$ K/(H \cap K) \cong HK/H $$

G. Sharper Cayley Theorem

Q1

To prove $\rho_a$ is a permutation of $X$, we must show it is a bijective mapping from $X$ to $X$.

To show it is injective, let $x_1, x_2 \in X$ and $a \in G$. Suppose $\rho_a(x_1 H) = \rho_a(x_2 H)$. Since $a \in G$ and $G$ is a group, then $a^{-1} \in G$. Then $(a x_1) H = (a x_2) H$ and,

$$ x_1 H = a^{-1} a x_2 H = x_2 H $$

Therefore $\rho_a$ is injective.

To show it is surjective, consider $g \in G$ such that $\rho_a(x) = gH$. But we note that $\rho_a(x) = (ax)H$, so:

$$ gH = axH \text{ or } x H = a^{-1} g H $$

Thus $\rho_a$ is both injective and surjective and is therefore a bijective mapping from $X \rightarrow X$.

Q2

Prove $h : G \rightarrow S_X$ defined by $h(a) = \rho_a$ is a homomorphism.

Definition of $\rho_a$:

$$\rho_a(xH) = (ax)H$$

Let $a, b \in G$, then $\forall x \in X$:

$$h(ab) = \rho_{ab}$$

$$\rho_{ab}(x) = (abx)H = (a(bxH)) = (\rho_a \cdot \rho_b)(x) $$

Therefore:

$$ h(ab) = h(a) \cdot h(b) $$

Q3

Let $\rho_e$ denote an identity permutation which leaves the coset unchanged.

$$ \rho_e(xH) = xH $$

$$ h(a) = \rho_a \implies \forall x \in G \qquad \rho_a(xH) = axH = xH $$

But because $\rho_a$ is an identity permutation then $axH = xH$. That is,

$$ xax^{-1} H = H $$

Thus the kernel of $h$ is:

$$ ker f = { a \in H : xax^{-1} \in H, \forall x \in G } $$

Q4

Since $h$ is a homomorphism by:

$$ f : G \underset{ker f}{\relbar\joinrel\twoheadrightarrow} S_x $$

$$ G / ker f \cong \bar{S} \leq S_X $$

If group is a normal subgroup then $\forall a \in A$ and $x \in G$, $xax^{-1} \in A$, which is contained in the kernel of $f$ from the last exercise.

If $H$ contains no normal subgroup of $G$ except ${ e }$ then:

$$ ker f = { e }$$

So the quotient group $G / ker f$ is simply $G$, so we have:

$$ G \cong \bar{S} \leq S_X $$

Since $S_X$ is a permutation representation, for which we only define permutations depending on the elements in $G$. This is why the identity is an homomorphism and not an isomorphism.

H. Quotient Groups Isomorphic to the Circle Group

Q1

Cosine and sine identities:

$$ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta $$

$$ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta $$

\begin{align*} \cis (x + y) &= (\cis x)(\cis y) \ &= \cos(x + y) + i \sin(x + y) = (\cos x + i \sin x)(\cos y + i \sin y) \ &= \cos(x + y) + i \sin(x + y) = \cis (x + y) \end{align*}

Q2

$$T = { \cis x : x \in \mathbb{R} } $$

Properties of a group:

  1. Closure
  2. Associativity
  3. Identity
  4. Inverses

Let $u, v \in T$, then the group operation is multiplication and $u = \cis x$ for some $x \in \mathbb{R}$ and $v = \cis y$ for some $y \in \mathbb{R}$.

Then $u \cdot v = (\cis x)(\cis y) = \cis(x + y)$, where $x + y \in \mathbb{R}$ and so $u \cdot v \in T$ which obeys closure property.

Since the result of $\cis$ is a complex number, we conclude the group obeys associativity property.

For the identity, we must test whether 1 lies in $T$. That is $\exists x \in R: \cis x = 1 = \cos x + i \sin x$. Setting $x = 0$, we get $\cis x = 1$, so group obeys identity property.

For inverses, we know 1 lies in the group so:

$$ |z| = 1 \implies \frac{1}{|z|} = 1 = |\frac{1}{z}| $$

So the value $\frac{1}{z}$ is also in the unit square.

Q3

Let $x, y \in \mathbb{R}$

\begin{align*} f(x + y) &= \cis (x + y) \ &= (\cis x)(\cis y) \ &= f(x) f(y) \end{align*}

Thus $f$ is a homomorphism $f: \mathbb{R} \rightarrow T$

Q4

\begin{align*} \ker f &= { x \in \mathbb{R}: f(x) = 1 } \ &= { 2n \pi : n \in \mathbb{Z} } = \langle 2 \pi \rangle \end{align*}

Q5

$$ f : \mathbb{R} \underset{\langle 2 \pi \rangle}{\relbar\joinrel\twoheadrightarrow} T $$

$$ T \cong \mathbb{R}/\langle 2 \pi \rangle $$

Q6

$$ g(x) = \cis 2\pi x $$

\begin{align*} g(x + y) &= \cis (2 \pi x + 2 \pi y) \ &= g(x) g(y) \end{align*}

$\ker g = \mathbb{Z}$ because $\cis(2 \pi n) = 1$

Q7

$$ g : \mathbb{R} \underset{\mathbb{Z}}{\relbar\joinrel\twoheadrightarrow} T $$

I. Second Isomorphism Theorem

$$ H \trianglelefteq G \qquad K \trianglelefteq G \qquad H \subseteq K $$

$$ \phi: G/H \rightarrow G/K $$

$$ \phi(Ha) = Ka $$

Q1

$Ha = Hb $ so $a \in Hb$, hence $a = h b$ for some $h \in H$

$$ \phi(Ha) = \phi(Hhb) = \phi(Hb) $$

If $a = he$ then $\phi(Ha) = \phi(H)$ so $\phi$ has an identity.

Q2

Because $H$ is a normal subgroup then $Ha = aH$ so $HaHb = Hab$. We can see this by:

\begin{align*} h_1 a h_2 b &= h_1 a h_2 a^{-1} a b \ &= h_1 \bar{h_2} a b \end{align*}

\begin{align*} \phi(HaHb) &= \phi(Hab) = Kab \ &= Kab = KaKb &= \phi(Ha)\phi(Hb) \end{align*}

Q3

Let there be a $Ka$, then $\phi(Ha)$ maps to that value. That is for a set $Ka$, let $x = ka$, then $a = xk^{-1}$. Thus function is surjective.

Q4

$$K/H = { He, Ha, Hb, \dots }$$

\begin{align*} \ker \phi &= { aH: Ka = K, \forall a \in G } \ &= { aH: a \in K, \forall a \in G } \end{align*}

But $K \leq G$ so:

$$\ker \phi = { aH: a \in K }$$

Q5

$$ \phi : G/H \underset{K/H}{\relbar\joinrel\twoheadrightarrow} G/K $$

$$ (G/H)/(K/H) \cong G/K $$

Correspondence Theorem

$$ f : G \underset{K}{\relbar\joinrel\twoheadrightarrow} H $$

$$ S \leq H $$

$$ S^* = { x \in G : f(x) \in S } $$

Q1

Prove $S^* \leq G$

Let $x, y \in S^*$, then $f(x) \in S$ and $f(y) \in S$

Since $f$ is a homomorphism then $f(xy) = f(x)f(y) \in S$

So $xy \in S^*$

Q2

Prove $K \subseteq S^*$

$$ K = { x \in G : f(x) = e_H } $$

$e_H \in S$ because $S$ is a group.

Thus $K \subseteq S^*$

Q3

Let $g$ be the restriction of $f$ to $S^$. That is, $g(x) = f(x)$ for every $x \in S^$ and $S^$ is the domain of $g$. Prove $g$ is a homomorphism from $S^$ onto $S$ and $K = \ker g$.

$$S \leq H$$

Let $s \in S$, then $g(x) = S$, but definition of $S^* = { x : f(x) \in S }$, thus $x \in S^$ and $g$ is a homomorphism from $S^$ onto $S$.

$K = \ker g$ because $K \subseteq S^*$ and $g(x) = f(x)$

Q4

$$ g : S^* \underset{K}{\relbar\joinrel\twoheadrightarrow} S $$

$$ S \cong S^*/K $$

K. Cauchy's Theorem

See also proof in this video.

$|G| = k$ and $p$ is a prime divisor. Assume $G$ is not abelian. Let $C$ be the center of $G$ and $C_a$ be the centralizer of $a$ for each $a \in G$.

Let $k = c + k_s + \dots + k_t$ be the class equation.

Show $G$ has at least one element of order $p$.

Q1

Prove: if $p$ is a factor of $|C_a|$ for any $a \in G$ where $a \notin C$, we are done.

$$C_a = { x \in G : xa = ax } $$

Since $C_a$ is subgroup, then this implies there is an element of order $p$ inside $C_a$ by Lagrange's theorem.

Q2

Prove that for any $a \notin C$ in $G$, if $p$ is not a factor of $|C_a|$ then $p$ is a factor of $(G: C_a)$.

From orbit-stabilizer theorem, orbits are conjugacy classes and stabilizers are centralizers, considering the group acting on itself through conjugation.

$$ O(u) = { g(u) : g \in G } $$

$$ G_u = { g \in G : g(u) = u } $$

$$ C_a = { x \in G : xax^{-1} = a } $$

$$ [a] = { xax^{-1} : x \in G } $$

Let the group action $g(u)$ be conjugation $gug^{-1}$ then $C_a$ is equivalent to $G_u$, and $O(u)$ equivalent to conjugacy class $[a]$. Thus,

$$ (G: C_a) = \frac{|G|}{|C_a|} = |[a]| $$

Since $p$ divides $G$ but not $C_a$, then $p$ divides $(G:C_a)$.

Q3

As shown above, the size of the conjugacy class $[a]$ is $(G:C_a)$

$$ k_i = \frac{|G|}{|C_a|} $$

Where $|G|$ has a prime divisor $p$.

But $k = c + k_s + \dots + k_t$ where $k$ and all $k_i$ are factors of $p$, so $c$ is a factor of $p$.

L. Subgroups of p-Groups (Prelude to Sylow)

A p-group is any group whose order is a power of $p$.

If $|G| = p^k$ then $G$ has a normal subgroup of order $p^m$ for every $m$ between 1 and $k$.

Q1

Prove there is an element in $C$ such that $\ord(a) = p$

$$|G| = p^k \implies |C| \text{ is a multiple of } p$$

Thus there is an $a \in C$ such that $\ord(a) = p$

Let $x \in C$ st $\langle x \rangle = C$, then $x^{tp} = e$ and then $a = x^t$

Q2

Prove $\langle a \rangle$ is a normal subgroup of $G$.

Definition of normal subgroup:

$$\forall a \in H, \forall x \in G, xax^{-1} \in H$$

The center is a normal subgrop.

$\langle a \rangle \subseteq C$, thus $\langle a \rangle$ is a nromal subgroup of $G$

Q3

Explain why it may be assumed that $G/\langle a \rangle$ has a normal subgroup of order $p^{m-1}$

$$|G| = p^k \qquad |\langle a \rangle| = p$$

$$\ord(G/\langle a \rangle) = p^{k - 1}$$

Thus for $m$ from 1 to $k$, there is a normal quotient subgroup of order $p^{m -1 }$.

Note:

$$ \mathbb{Z}_m \times \mathbb{Z}n \cong \mathbb{Z}{mn} \iff \gcd(m, n) = 1$$

Because $\ord((a, b)) = \lcm(m, n) = \frac{mn}{gcd(m, n)} = mn$

Q4

Use J4 to prove that $G$ has a normal subgroup of order $p^m$.

Correspondence theorem:

$$ f : G \underset{K}{\relbar\joinrel\twoheadrightarrow} H $$

$$ S^* = { x \in G : f(x) \in S } $$

$$ S \cong S^*/K $$

Use the natural homomorphism $f : G \rightarrow G/ \langle a \rangle$ with kernel $\langle a \rangle$

Let $S$ be a the normal subgroup of $G/\langle a \rangle$ whose order is $p^{m - 1}$

Show $S^*$ is a normal subgroup of $G$ and its order is $p^m$

Since the order of $\langle a \rangle$ is $p$, and the order of $S$ is $p^{m - 1}$ then the order of $S^*$ is $p^m$

Both $S$ and $K$ are normal subgroups, thus $S^*$ is normal.

M. p-Sylow Subgroups

Q1

Cauchy's theorem states: If $G$ is a group and $p$ is any prime divisor of $|G|$, then $G$ has at least one element of order $p$.

If $q$ is a prime that divides $|G|$ then there would be an element of order $q$. Thus the order of any p-group is a power of $p$.

Q2

Prove every conjugate of a p-Sylow subgroup of $G$ is a p-Sylow subgroup of $G$.

$gHg^{-1}$ is an inner automorphism hence $|H| = |gHg^{-1}|$

Q3

Let $a \in N$ and suppose the order of $Ka$ in $N/K$ is a power of $p$. Let $S = \langle Ka \rangle$ be the cyclic subgroup of $N/K$ generated by $Ka$. Prove that $N$ has a subgroup $S^$ such that $S^/K$ is a p-group.

$$N = N(K) = { g \in G : gK = Kg }$$

$$f:N \rightarrow N/K$$ $$ f(a) = Ka$$

Let $x, y \in S^*$ then $f(xy) = f(x)f(y) \in S$

Hence $xy \in S^$ and $S^ \leq N$. By J4:

$$ S \cong S^* / K$$

$|S|$ is a power of $p$.

$$|S^/K| = (S^ : K) = \frac{|S^*|}{|K|} = |S|$$

Q4

Prove that $S^$ is a p-subgroup of $G$, then explain why $S^ = K$ and why it follows that $Ka = K$.

$$S = \langle Ka \rangle$$ $$S^* = { x \in N : Kx \in S }$$

$$S^* \leq N \text{ and } a \in N $$ $K \leq N$ because normalizer contains the group itself

Let $x \in K$, then $Kx = K \in S$ thus $x \in S^$, so $K \leq S^$ but $K$ is maximal, hence $S^* = K$ and it follows $Ka = K$.

Q5

$$S \cong S^* / K$$

Hence $S = { K }$

Any $Ka \in N/K$ with order $p$ is equivalent to $K$ the identity.

Q6

$$\ord(a) = p^k \implies a^{p^k} = e$$ $Ka^{p^k} = K$, thus order of $Ka$ in $N/K$ is a power of $p$.

If $\ord(a)$ is a power of $p$ then $a \in K$

Q7

If $aKa^{-1} = K$ then $a \in N$

$\ord(a)$ is a power of $p$ then $a \in K$

N. Sylow's Theorem

Let $G$ be a finite group and $K$ a $p$-Sylow subgroup of $G$.

Let $X$ be the set of all the conjugates of $K$.

If $C_1, C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2 a^{-1}$ for some $a \in K$

Q1

Prove $\sim$ is an equivalence relation on $X$.

$$X = { aKa^{-1}, \forall a \in G$$

$$C_1, C_2 \in X$$ $$C_1 \sim C_2 \text{ iff } C_1 = a C_2 a^{-1} \text{ for an } a \in K$$

Let $u \in X$ st $u \sim C_1$ and $u \sim C_2$

\begin{align*} u = a_1 C_1 a_1^{-1} &= a_2 C_2 a_2^{-1} \ a_1 C_1 a_1^{-1} &= a_2 C_2 a_2^{-1} \ C_1 &= a_1^{-1} a_2 C_2 a_2^{-1} a_1 \ &= (a_1^{-1} a_2) C_2 (a_1^{-1} a_2)^{-1} \ &= \bar{a} C_2 \bar{a}^{-1} \end{align*}

Thus $C_1 \sim C_2$

Q2

For each $C \in X$, prove the number of elements in $[C]$ is a divisor of $|K|$.

Conclude that for each $C \in X$, the number of elemenbts in $[C]$ is either 1 or a power of $p$.

From orbit-stablizer:

$$O(C) = { aCa^{-1} : a \in K } = [C]$$ $$G_C = { a \in K : aCa^{-1} = C } = N(C) = N$$

$$|[C]| = (K : N)$$

Let $\phi : N^* \rightarrow [C]$ by $\phi(Na) = aCa^{-1}$

Thus $|O(C)| = |[C]| = \frac{|K|}{|N|}$ and the number of elements in $[C]$ is either 1 or a power of $p$.

Alternative: from M2, every conjugate of $K$ is also a $p$-Sylow subgroup of $G$. Hence from Chapter 14 I10, number of elements in $X_C = [C]$ is a divisor of $|K|$.

Q3

Prove the only class with a single element is $[K]$ (using exercise M7).

\begin{align*} [K] &= { aKa^{-1} : a \in K } \ &= { K } \end{align*}

If $|[C]| = 1$ then $C = aCa^{-1} \quad \forall a \in K$ which means $C = K$.

Q4

Prove the number of elements in $X$ is $kp + 1$ usings parts 2 and 3.

$$X = {K, C_2, C_3, \dots }$$

$$X = \bigcup_i [C_i]$$ Where $[C_i] \cap [C_j] = \varnothing$ or $[C_i] = [C_j]$

But $|[K]| = 1$ while all other $C_i$ is a positive power of $p$.

Thus $|X| = 1 + kp$

Q5

Prove that $(G : N)$ is not a multiple of $p$.

$(G:N)$ is the number of equivalency classes that partition $G$, which divides $kp + 1$ (number of elements in $X$). It does not divide $p$, hence $(G:N)$ is a not a multiple of $p$.

Q6

Prove that $(N:K)$ is not a multiple of $p$.

$(N:K) = \frac{|N|}{|K|}$ but $K$ is a $p$-Sylow subgroup so $(N:K)$ is not a multiple of $p$.

$$(G:K) = (G:N)(N:K)$$

We know $(G:K)$ is not a factor of $p$, because $p$ is a factor of $|K|$ (from K2), and M5 states no element of $N/K$ has order a power of $p$.

$\therefore (N:K)$ is not a multiple of $p$.

Q7

Prove $(G:K)$ is not a multiple of $p$.

$$(G:K) = (G:N)(N:K)$$

Q8

Let $G$ be a finite group of order $p^k m$ where $p$ is not a factor of $m$. Conclude every $p$-Sylow subgroup $K$ of $G$ has order $p^k$

The only class with a single element is $[K]$ since $aKa^{-1} = K$, all elements where the order is a power of $p$ are in $K$.

P. Decomposition of a Finite Abelian Group into p-Groups

Let $G$ be an abelian group of order $p^k m$ where $p^k$ and $m$ are relatively prime.

Let $G_{p^k}$ be the subgroup of $G$ consisting of all elements whose order divides $p^k$.

Let $G_m$ be the subgroup of $G$ consisting of all elements whose order divides $m$.

Q1

Prove $\forall x \in G$ and integers $s$ and $t$, $x^{sp^k} \in G_m$ and $x^{tm} \in G_{p^k}$.

$p^k$ and $m$ are coprime. Thus $sp^k + tm = gcd(p^k, m) = 1$

$G_{p^k}$ and $G_m$ are subgroups of order $p^k$ and $m$ respectively because $|G| = p^k m$

$(x^{sp^k})^m = e$ thus $\ord(x^{sp^k}) | m$ and $x^{sp^k} \in G_m$

Q2

Let $x \in G$, then because $p^k$ and $m$ are coprime $sp^k + tm = 1$.

Thus $x = x^{sp^k}x^{tm} \in G$

But $x^{sp^k} \in G_m$ and $x^{tm} \in G_{p^k}$. Thus,

\begin{align*} x &= yz \ &= (x^{tm})(x^{sp^k}) \end{align*}

Q3

By Lagrange's theorem $G_{p^k} \cap G_m \leq G_{p^k}$ and also $G_m$.

Thus $|G_{p^k} \cap G_m|$ divides $|G_{p^k}|$ and $|G_m| \implies |G_{p^k} \cap G_m|$ divides $\gcd(|G_{p^k}|, |G_m|) = 1$

$$\therefore |G_{p^k} \cap G_m| = 1 = { e }$$

Q4

$G_{p^k}$ and $G_m$ are normal subgroups because $G$ is abelian. $G_{p^k} \cap G_m = { e }$ and so $G = G_{p^k}G_m$

$$\forall x \in G \qquad \exists y \in G_{p^k} \quad \exists z \in G_m : x = yz$$

Let $\phi : G_{p^k} \times G_m \rightarrow G$ by,

$$\phi(y, z) = yz$$

Thus, $$G \cong G_{p^k} \times G_m$$

Q. Basis Theorem for Finite Abelian Groups

Q1

\begin{align*} G' &= { a_2^{l_2} \cdots a_n^{l_n} : l_i \in \mathbb{Z}, 2 \leq i \leq n } \ &= [a_2, \dots, a_n] \end{align*}

$\forall x, y \in G'$ then $xy \in G'$

Also by D2, $a_1^{l_1} = a_2^{l_2} = \cdots = a_n^{l_n} = e$, thus contains the identity.

$G'$ contains inverses. Thus $G' \leq G$

Q2

Prove: $$G \cong \langle a_1 \rangle \times G'$$ $$a_1^{k_1} \in \langle a_1 \rangle $$

See also this question

From Chapter 14, H: if $H$ and $K$ are normal subgroups of $G$, such that $H \cap K = { e }$ and $G = HK$, then $G \cong H \times K$

Firstly all subgroups of $G$ are normal since the group is abelian.

Lastly we have to prove that $\langle a \rangle \cap G' = { e }$

By Lagrange's theorem $\langle a \rangle \cap G' \leq \langle a \rangle$ and also $G'$.

Thus $|\langle a \rangle \cap G'|$ divides $|\langle a \rangle|$ and $|G'| \implies |\langle a \rangle \cap G'|$ divides $\gcd(|\langle a \rangle|, |G'|) = 1$

$$\therefore |\langle a \rangle \cap G'| = 1 = { e }$$

Q3

Explain why we may assume that $G/H = [Hb_1, \dots, Hb_n]$ for some $b_1, \dots, b_n \in G$

Page 149 Theorem 4 from Quotient Groups: "$G/H$ is a homomorphic image of $G$" $$f: G \rightarrow G/H$$ $$f(x) = Hx$$

Let $x \in G$, then $x = a^{k_0} b_1^{k_1} \cdots b_n^{k_n}$ for some $a, b_1, \dots, b_n \in G$

\begin{align*} f(x) &= f(a b_1^{k_1} \cdots b_n^{k_n}) \ &= H(a \cdot b_1^{k_1} \cdots b_n^{k_n}) = H(b_1^{k_1} \cdots b_n^{k_n}) \qquad \text{ (because } a \in H \text{)}\ &= (Hb_1)^{k_1} \cdots (Hb_n)^{k_n} \end{align*}

Now,

\begin{align*} G/H &= { f(x) : \forall x \in G } \ &= { (Hb_1)^{k_1} \cdots (Hb_n)^{k_n} : k_i \in \mathbb{Z}, 1 \leq i \leq n } \ &= [Hb_1, \dots, Hb_n] \end{align*}

Q4

$x \in G \implies x \in Hx$

But $H = \langle a \rangle$ and $G = [Hb_1, \dots, Hb_n]$.

Thus $x = a^{k_0} b_1^{k_1} \cdots b_n^{k_n}$

Q5

Prove that if $a^{l_0} b_1^{l_1} \cdots b_n^{l_n} = e$, then $a^{l_0} = b_1^{l_1} = \cdots = b_n^{l_n} = e$. Conclude that $G = [a, b_1, \dots, b_n]$.

$$x = a^{l_0} b_1^{l_1} \cdots b_n^{l_n} = e$$ $$G \cong G_1 \times G_2 \times \cdots \times G_n$$ $$G/H \cong G_1/H \times G_2/H \times \cdots \times G_n/H$$ \begin{align*} Hx &= (Ha^{l_0})(Hb_1^{l_1})\cdots(Hb_n^{l_n}) \ &= (Hb_1^{l_1})\cdots(Hb_n^n) \end{align*}

Chapter 10, E4: "If $m$ and $n$ are relatively prime, then $\ord(ab) = mn$"

Also $\gcd(a, b) = 1 \implies \gcd(a^i, b^j) = 1$

$$\ord(Hx) = \ord(Hb_1^{l_1}) \cdots \ord(Hb_n^{l_n})$$

Since $\ord(Hx) = 1$, this means $\ord(Hb_i^{l_i}) = 1$ and because $\ord(b_i) = \ord(Hb_i)$, thus $\ord(b_i^{l_i}) = 1 \implies b_i = e$.

Lastly $a^{l_0} \cdot e = e \implies a = e$

Q6

If $|G|$ has the following factorization into primes: $|G| = p_1^{k_1} \cdots p_n^{k_n}$, then $G \cong G_1 \times \cdots \times G_n \cong \langle a_1 \rangle \times \cdots \times \langle a_n \rangle$.

As shown in previous exercise, the order of $G$ is the product of the order of each generator for the subgroups.

Lastly chapter 10, E3 showed that is $m$ and $n$ are relatively prime, then the products $a^i b^j (0 \leq i \leq m, 0 \leq j \leq n)$ are all distinct. Thus the products of $a$ and $b$ can be decomposed as unique factors.