Skip to content

Latest commit

 

History

History
592 lines (449 loc) · 17.6 KB

File metadata and controls

592 lines (449 loc) · 17.6 KB
title author header-includes abstract
Abstract Algebra by Pinter, Chapter 19
Amir Taaki
- \usepackage{mathrsfs} - \usepackage{mathtools} - \usepackage{extpfeil} - \DeclareMathOperator\ker{ker} - \DeclareMathOperator\ord{ord} - \DeclareMathOperator\gcd{gcd} - \DeclareMathOperator\lcm{lcm} - \DeclareMathOperator\mod{mod}
Chapter 19 on Quotient Rings

A. Examples of Quotient Rings

Q1

$$A = \mathbb{Z}_{10}, J = { 0, 5 }$$

\begin{align*} J = J + 0 &= { 0, 5 } \ J + 1 &= { 1, 6 } \ J + 2 &= { 2, 7 } \ J + 3 &= { 3, 8 } \ J + 4 &= { 4, 9 } \end{align*}

\begin{tabular}{c | c c c c c c c c c} $+$ & J & J + 1 & J + 2 & J + 3 & J + 4 \ \cline{1-6} J & J & J + 1 & J + 2 & J + 3 & J + 4 \ J + 1 & J + 1 & J + 2 & J + 3 & J + 4 & J \ J + 2 & J + 2 & J + 3 & J + 4 & J & J + 1 \ J + 3 & J + 3 & J + 4 & J & J + 1 & J + 2 \ J + 4 & J + 4 & J & J + 1 & J + 2 & J + 3 \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & J & J + 1 & J + 2 & J + 3 & J + 4 \ \cline{1-6} J & J & J & J & J & J \ J + 1 & J & J + 1 & J + 2 & J + 3 & J + 4 \ J + 2 & J & J + 2 & J + 4 & J + 1 & J + 3 \ J + 3 & J & J + 3 & J + 1 & J + 4 & J + 2 \ J + 4 & J & J + 4 & J + 3 & J + 2 & J + 1 \ \end{tabular}

Q2

$$A = P_3, J = { \varnothing, {a}}$$

\begin{align*} J = J + 0 &= { \varnothing, {a }} \ J + { b } &= { {b}, {a, b }} \ J + { c } &= { {c}, {a, c }} \ J + { b, c } &= { {b, c}, {a, b, c }} \ \end{align*}

\begin{tabular}{c | c c c c c c c c c} $+$ & J & J + {b} & J + {c} & J + {b,c} \ \cline{1-5}
J & J & J + {b} & J + {c} & J + {b,c} \ J + {b} & J + {b} & J & J + {b,c} & J + {c} \ J + {c} & J + {c} & J + {b,c} & J & J + {b} \ J + {b,c} & J + {b,c} & J + {c} & J + {b} & J \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & J & J + {b} & J + {c} & J + {b,c} \ \cline{1-5}
J & J & J & J & J \ J + {b} & J & J + {b} & J & J + {b} \ J + {c} & J & J & J + {c} & J + {c} \ J + {b,c} & J & J + {b} & J + {c} & J + {b,c} \ \end{tabular}

Q3

$$A = \mathbb{Z}_2 \times \mathbb{Z}_6, J = {(0, 0), (0, 2), (0, 4)}$$

\begin{align*} J &= {(0, 0), (0, 2), (0, 4)} \ J + (0, 1) &= {(0, 1), (0, 3), (0, 5)} \ J + (1, 0) &= {(1, 0), (1, 2), (1, 4)} \ J + (1, 1) &= {(1, 1), (1, 3), (1, 5)} \ \end{align*}

\begin{tabular}{c | c c c c c c c c c} $+$ & J & J + (0,1) & J + (1,0) & J + (1,1) \ \cline{1-5}
J & J & J + (0,1) & J + (1,0) & J + (1,1) \ J + (0,1) & J + (0,1) & J & J + (1,1) & J + (1,0) \ J + (1,0) & J + (1,0) & J + (1,1) & J & J + (0,1) \ J + (1,1) & J + (1,1) & J + (1,0) & J + (0,1) & J \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & J & J + (0,1) & J + (1,0) & J + (1,1) \ \cline{1-5}
J & J & J & J & J \ J + (0,1) & J & J + (0,1) & J & J + (0,1) \ J + (1,0) & J & J & J + (1,0) & J + (1,0) \ J + (1,1) & J & J + (0,1) & J + (1,0) & J + (1,1) \ \end{tabular}

B. Examples of the Use of the FHT

Q1

$$f(x) = x \mod 5$$ $$\ker f = { 0, 5, 10, 15 } = \langle 5 \rangle$$ $$\mathbb{Z}5 \cong \mathbb{Z}{20} / \langle 5 \rangle$$

\begin{align*} J = J + 0 &= { 0, 5, 10, 15 } \ J + 1 &= { 1, 6, 11, 16 } \ J + 2 &= { 2, 7, 12, 17 } \ J + 3 &= { 3, 8, 13, 18 } \ J + 4 &= { 4, 9, 14, 19 } \end{align*}

\begin{tabular}{c | c c c c c c c c c} $+$ & J & J + 1 & J + 2 & J + 3 & J + 4 \ \cline{1-6} J & J & J + 1 & J + 2 & J + 3 & J + 4 \ J + 1 & J + 1 & J + 2 & J + 3 & J + 4 & J \ J + 2 & J + 2 & J + 3 & J + 4 & J & J + 1 \ J + 3 & J + 3 & J + 4 & J & J + 1 & J + 2 \ J + 4 & J + 4 & J & J + 1 & J + 2 & J + 3 \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & J & J + 1 & J + 2 & J + 3 & J + 4 \ \cline{1-6} J & J & J & J & J & J \ J + 1 & J & J + 1 & J + 2 & J + 3 & J + 4 \ J + 2 & J & J + 2 & J + 4 & J + 1 & J + 3 \ J + 3 & J & J + 3 & J + 1 & J + 4 & J + 2 \ J + 4 & J & J + 4 & J + 3 & J + 2 & J + 1 \ \end{tabular}

Tables are exact same for mod 5.

Q2

$$f(x) = x \mod 3$$ $$\ker f = { 0, 3 } = \langle 3 \rangle$$ $$\mathbb{Z}_3 \cong \mathbb{Z}_6 / \langle 3 \rangle$$

\begin{align*} J = J + 0 &= { 0, 3 } \ J + 1 &= { 1, 4 } \ J + 2 &= { 2, 5 } \ \end{align*}

\begin{tabular}{c | c c c c c c c c c} $+$ & J & J + 1 & J + 2 \ \cline{1-4} J & J & J + 1 & J + 2 \ J + 1 & J + 1 & J + 2 & J \ J + 2 & J + 2 & J & J + 1 \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & J & J + 1 & J + 2 \ \cline{1-4} J & J & J & J \ J + 1 & J & J + 1 & J + 2 \ J + 2 & J & J + 2 & J + 1 \ \end{tabular}

Tables are exact same for mod 3.

Q3

$$P_2 = { \varnothing, {a}, {b}, {a, b}}$$ $$P_3 = { \varnothing, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }$$ \begin{align*} K = K + \varnothing &= { \varnothing, { c } } \ K + { a } &= { { a }, { a, c } } \ K + { b } &= { { b }, { b, c } } \ K + { a, b } &= { { a, b }, { a, b, c } } \ \end{align*} $$f(X) = X \cap { a, b }$$ $$f : P_3 \rightarrow P_2$$ $$P_2 \cong P_3 / \langle { \varnothing, { c } } \rangle$$

\begin{tabular}{c | c c c c c c c c c} $+$ & K & K + {a} & K + {b} & K + {a,b} \ \cline{1-5} K & K & K + {a} & K + {b} & K + {a,b} \ K + {a} & K + {a} & K & K + {a,b} & K + {b} \ K + {b} & K + {b} & K + {a,b} & K & K + {a} \ K + {a,b} & K + {a,b} & K + {b} & K + {a} & K \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & K & K + {a} & K + {b} & K + {a,b} \ \cline{1-5} K & K & K & K & K \ K + {a} & K & K + {a} & K & K + {a} \ K + {b} & K & K & K + {b} & K + {b} \ K + {a,b} & K & K + {a} & K + {b} & K + {a,b} \ \end{tabular}

Q4

$$f: \mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \mathbb{Z}_2$$ $$f((x, y)) = x$$ $$K = { (0,0), (0, 1) }$$ $$K + (1, 0) = { (1,0), (1,1) }$$

\begin{tabular}{c | c c c c c c c c c} $+$ & K & K + (1,0) \ \cline{1-3}
K & K & K + (1,0) \ K + (1,0) & K + (1,0) & K \ \end{tabular}

\begin{tabular}{c | c c c c c c c c c} $\cdot$ & K & K + (1,0) \ \cline{1-3}
K & K & K \ K + (1,0) & K & K + (1,0) \ \end{tabular}

C. Quotient Rings and Homomorphic Images in $\mathcal{F}(\mathbb{R})$

Q1

$$\phi : \mathcal{F}(\mathbb{R}) \rightarrow \mathbb{R} \times \mathbb{R}$$ $$\phi(f) = (f(0), f(1))$$

  1. $\phi(f + g) = ((f + g)(0), (f + g)(1)) = (f(0), f(1)) + (g(0), g(1)) = \phi(f) + \phi(g)$
  2. $\phi(f \cdot g) = ((f \cdot g)(0), (f \cdot g)(1)) = (f(0), f(1))(g(0), g(1)) = \phi(f)\phi(g)$

Let $f(x) = (a - b)x + b$, then $f \in \mathcal{F}(\mathbb{R})$, $f(0) = b$ and $f(1) = a$. Thus functions of this form can represent any value in $\mathbb{R} \times \mathbb{R}$ and so the homomorphism $\phi$ is onto $\mathbb{R} \times \mathbb{R}$.

$$K = { f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 \text{ and } f(1) = 0 }$$

Q2

$$J = { f \in \mathcal{F}(\mathbb{R}) : f(0) = 0 \text{ and } f(1) = 0 }$$

Thus $J$ is the kernel of the homomorphism $\phi$. The kernel is also an ideal of $\mathcal{F}(\mathbb{R})$, so $$\mathcal{F}(\mathbb{R}) / J \cong \mathbb{R} \times \mathbb{R}$$

Q3

$$\phi: \mathcal{F}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{Q}, \mathbb{R})$$ $$\phi(f) = f_{\mathbb{Q}} = \text{ the restriction of } f \text{ to } \mathbb{Q}$$

$\phi$ is onto because $\forall g \in \mathcal{F}(\mathbb{Q}, \mathbb{R}), \exists f \in \mathcal{F}(\mathbb{R}) : g = f_{\mathbb{Q}}$. $\phi$ is a homomorphism since $\phi(f \cdot g) = \phi(f) \cdot \phi(g)$ and $\phi(f + g) = \phi(f) + \phi(g)$.

$$K = { f \in \mathcal{F}(\mathbb{R}) : f(x) = 0 }$$

Q4

$J$ is also the kernel of $\mathcal{F}(\mathbb{R})$, which means it is also an ideal. Thus $$\mathcal{F}(\mathbb{R}) / J \cong \mathcal{F}(\mathbb{Q})$$

D. Elementary Applications of the Fundamental Homomorphism Theorem

Q1

Note that ring is commutative then $$(x + y)^2 = x(x + y) + y(x + y) = x^2 + xy + yx + y^2 = x^2 + 2xy + y^2 = x^2 + y^2$$

So $h(x) = x^2$ is a homomorphism since $h(x + y) = x^2 + y^2 = h(x) + h(y)$ and $h(xy) = x^2 y^2 = h(x) h(y)$

$$J = {x \in A : x^2 = 0 }$$ $$B = { x^2 : x \in A }$$

$h$ is a homomorphism from $A$ to $B$ and the kernel is $J$ $$A/J \cong B$$

Q2

$h(x) = 3x$ is a homomorphism because $h(x + y) = 3x + 3y = h(x) + h(y)$ and $h(xy) = h(x) h(y)$ because $$h(xy) = 3xy = 6xy + 3xy = (3x)(3y) = h(x)h(y)$$

$J = { x : 3x = 0 }$ is the kernel and thus ideal of $h$. $B = { 3x : x \in A }$ is a subring of $A$ by the homomorphism shown above $$A/J \cong B$$

Q3

$$\pi_a(xy) = axy = a^2 xy = (ax)(ay) = \pi_a(x)\pi_a(y)$$ $$\pi_a(x + y) = a(x + y) = ax + ay = \pi_a(x) + \pi_a(y)$$ $$I_a = { x \in A : ax = 0 } = \ker \pi_a$$ $$\pi_a(1) = a$$ $$\pi_a(x) = \pi_a(x \cdot 1) = a + \cdots + a \in \langle a \rangle$$ $$\pi_a : A \rightarrow \langle a \rangle$$ $$A / I_a \cong \langle a \rangle$$

Q4

$$\phi(ab) = \pi_{ab} = \pi_a \pi_b = \phi(a) \phi(b)$$ $$\phi(a + b) = \pi_{a + b} = \pi_a + \pi_b = \phi(a) + \phi(b)$$ $$I = { x \in A : ax = 0, \forall a \in A }$$ $$\pi_a(x) = ax$$ $$\bar{A} = { \pi_a : a \in A }$$ $$\phi(a) = \pi_a$$ $$\ker \phi = { x \in A : \phi(x) = \pi_0 }$$ $$\forall a \in A \qquad \pi_0(a) = 0$$ $$\therefore \ker \phi = I$$ $$\phi : A \rightarrow \bar{A}$$ $$A/I \cong \bar{A}$$

E. Properties of Quotient Rings $A/J$ in Relation to Properties of $J$

Q1

Every element of $A/J$ has a square root iff for every $x \in A$, there is some $y \in A$ such that $x - y^2 \in J$.

Let $J + x \in A/J$ then $$J + x = (J + y)(J + y)$$ But $J$ is ideal and so absorbs products in $A$ $$J + x = J + y^2$$ $$J + x - y^2 = J$$ $$x - y^2 \in J$$

Q2

Every element of $A/J$ is its own negative iff $x + x \in J$ for every $x \in A$.

$$\forall x \in A, x + x \in J \implies J + x + x = J$$ $$\therefore \forall x \in A \qquad J + x = -(J + x)$$

Q3

$A/J$ is a boolean ring iff $x^2 - x \in J$ for every $x \in A$.

$$(J + x)^2 - (J + x) = J^2 + Jx + xJ + x^2 - J - x$$ But noting J absorbs products $$(J+x)^2 - (J + x) = J + x^2 - x$$ But $x^2 - x \in J$ so $$J + x^2 - x = J$$ so $A/J$ is a boolean ring.

Q4

If $J$ is the ideal of all the nilpotent elements of commutative ring $A$, then $A/J$ has no nilpotent elements (except zero).

$$a \in J \implies a^n = 0 \text{ for some } n$$ Let $x \in A : x \notin J \implies x^n \neq 0$ $$(J + x)^n = J + x^n \neq J$$ Thus $\forall x \in A : x \in J$, $J + x$ is not nilpotent.

Q5

Every element of $A/J$ is nilpotent iff $J$ has the following property: for every $x \in A$, there is a positive integer $n$ such that $x^n \in J$.

$$\forall x \in A, x^n \in J$$ $$(J + x)^n = J + x^n = J$$ Thus every element of $A/J$ is nilpotent.

Q6

$A/J$ has a unity element iff there exists an element $a \in A$ such that $ax - x \in J$ and $xa - x \in J$ for every $x \in A$.

\begin{align*} (J + a)(J + x) &= J + x \ &= J + ax \ (J + x)(J + a) &= J + x \ &= J + xa \end{align*}

$$J + x = J + ax$$ $$J + ax - x = J$$ So $ax - x \in J$ Likewise $$J + xa = J + x$$ $$J + xa - x = J$$ $$\implies xa - x \in J$$

F. Prime and Maximal Ideals

Let $A$ be a commutative ring with unity, and $J$ an ideal of $A$. Prove the following:

Q1

$A/J$ is a commutative ring with unity.

$$(J + x)(J + y) = J + xy$$ But $xy = yx$ $$J + xy = J + yx$$ $$\implies (J + x)(J + y) = (J + y)(J + x)$$

$$(J + 1_A)(J + x) = J + x$$

Q2

$J$ is a prime ideal iff $A/J$ is an integral domain.

Assume $J$ is a prime ideal.

$$ab \in J \implies a \in J \text{ or } b \in J$$ $$J + ab = J + ac \implies J + b = J + c$$ Let $J + ab = J + ac$ $$J + ab - ac = J$$ $$a(b - c) \in J$$

But $a \notin J, b \notin J$ and $c \notin J$ $$\implies b - c \in J$$ $$J + b = J + c$$

Thus $$J + ab = J + ac \implies J + b = J + c$$

For the converse, assume $a \notin J$, if $a \in J$, then we are done, otherwise $$J + ab = J + a0 \implies J + b = J + 0$$ $$J + ab = J \implies J + b = J$$ $$a(b - c) \in J \implies b - c \in J$$ $$ab \in J \implies b \in J$$

Q3

Every maximal ideal of $A$ is a prime ideal.

Let $J$ be a maximal ideal of $A$.

Then $A/J$ is a field.

Every field is an integral domain, so $A/J$ is an integral domain.

Since $A/J$ is an integral domain, so $J$ is a prime ideal.

Q4

If $A/J$ is a field, then $J$ is a maximal ideal.

$$\phi(x) = J + x$$ $$j \in J, \phi(j) = J$$ $A/J$ is a field, so ideal is $J$, which is maximal.

G. Further Properties of Quotient Rings in Relation to Their Ideals

Q1

Prove that $A/J$ is a field iff for every element $a \in A$, where $a \notin J$, there is some $b \in A$ such that $ab - 1 \in J.$

$$(J + a)(J + b) = J + ab = J + 1 \implies ab - 1 \in J$$

Q2

Prove that every nonzero element of $A/J$ is either invertible or a divisor of zero iff the following property holds, where $a, x \in A$: For every $a \notin J$, there is some $x \notin J$ such that either $ax \in J$ or $ax - 1 \in J$.

$$ax - 1 \in J \implies (J + a)(J + x) = J + 1$$ and thus $J + a$ is invertible.

$$ax \in J \implies (J + a)(J + x) = J$$ and so $J + a$ is a divisor of zero.

Q3

An ideal $J$ of a ring $A$ is called primary iff for all $a, b \in A$, if $ab \in J$, then either $a \in J$ or $b^n \in J$ for some positive integer $n$. Prove that every zero divisor in $A/J$ is nilpotent iff $J$ is primary.

Nilpotent means $(J + x)^n = J$, but $(J + x)^n = J + x^n$, that is $x^n \in J$. Every zero divisor in $A/J$ means $(J + a)(J + b) = J + ab = J$ or that $ab \in J$. Thus either $a^1 \in J$ or $b^n \in J$. Thus we can say that $J + b$ is nilpotent since $(J + b)^n = J$.

Q4

An ideal $J$ of a ring $A$ is called semiprime iff it has the following property: For every $a \in A$, if $a^n \in J$ for some positive integer $n$, then necessarily $a \in J$. Prove that $J$ is semiprime iff $A/J$ has no nilpotent elements (except zero).

$A/J$ has no nilpotent elements means that $J + x^n \neq J$ for any integer $n$. Thus for every $a \in A: a \notin J$, then $a^n \notin J$. If $A/J$ has a nilpotent element, then $J$ cannot be semiprime because $a \notin J$ and $a^n \in J$ is a contradiction. This also holds true in reverse since $a^n \in J$ where $a \notin J$ would imply $J$ is not semiprime.

Q5

Prove that an integral domain can have no nonzero nilpotent elements. Then use part 4, together with Exercise F2, to prove that every prime ideal in a commutative ring is semiprime.

Nilpotent elements are also zero divisors since $a^n = 0 = a \cdot a^{n - 1}$. So an integral domain cannot have nilpotent elements.

From F2, we learn that if $J$ is a prime ideal, then $A/J$ is an integral domain (no nilpotent elements). From the last exercise, we see that if $A/J$ has no nilpotent elements, then $J$ is semiprime.

H. $\mathbb{Z}_n$ as a Homomorphic Image of $\mathbb{Z}$

Q1

$$x^2 - 7y^2 - 24 = 0$$ $$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_7$$ $$x^2 - 3 = 0$$ $$x^2 = 3$$ $$\forall x \in \mathbb{Z}_7, x^2 \neq 3$$ No solution.

Q2

$$x^2 + (x + 1)^2 + (x + 2)^2 = y^2$$ $$3x^2 + 6x + 5 = y^2$$ $$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_3$$ $$y^2 = 2$$ $$\forall y \in \mathbb{Z}_3, y^2 \neq 2$$ No solution.

Q3

$$x^2 + 10y^2 = 10n + a, a \in { 2, 3, 7, 8 }$$ $$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_{10}$$ $$x^2 = a$$ \begin{align*} 0^2 &= 0 \ 1^2 &= 1 \ 2^2 &= 4 \ 3^2 &= 9 \ 4^2 &= 6 \ 5^2 &= 5 \ 6^2 &= 6 \ 7^2 &= 9 \ 8^2 &= 6 \ 9^2 &= 1 \ \end{align*} No solution.

Q4

$$3, 8, 13, 18, 23, \dots = \langle 3 \rangle$$ $$x \in \mathbb{Z}_5 : x^2 = 3$$ \begin{align*} 0^2 &= 0 \ 1^2 &= 1 \ 2^2 &= 4 \ 3^2 &= 4 \ 4^2 &= 1 \ \end{align*}

Q5

$$2, 10, 18, 26, \dots = \langle 2 \rangle$$ $$x \in \mathbb{Z}_8 : x^3 = 2$$ \begin{align*} 0^3 &= 0 \ 1^3 &= 1 \ 2^3 &= 0 \ 3^3 &= 1 \ 4^3 &= 0 \ 5^3 &= 5 \ 6^3 &= 0 \ 7^3 &= 7 \ \end{align*}

Q6

$$3, 11, 19, 27, \dots = \langle 3 \rangle$$ $$x \in \mathbb{Z}_8 : x^2 + y^2 = 3$$ \begin{align*} 0^2 &= 0 \ 1^2 &= 1 \ 2^2 &= 4 \ 3^2 &= 1 \ 4^2 &= 0 \ 5^2 &= 1 \ 6^2 &= 4 \ 7^2 &= 1 \ \end{align*} For any $a \in \mathbb{Z}_8, a^2 = 1$ or $a^2 = 4$, so $\nexists x, y \in \mathbb{Z}_8 : x^2 + y^2 = 3$

Q7

$$n(n + 1) = 10u + a, a \in { 0, 2, 6 }$$ $$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_{10}$$ \begin{align*} 0 \cdot 1 &= 0 \ 1 \cdot 2 &= 2 \ 2 \cdot 3 &= 6 \ 3 \cdot 4 &= 2 \ 4 \cdot 5 &= 0 \ 5 \cdot 6 &= 0 \ 6 \cdot 7 &= 2 \ 7 \cdot 8 &= 6 \ 8 \cdot 9 &= 2 \ 9 \cdot 0 &= 0 \ \end{align*} Thus $n(n + 1) \in { 0, 2, 6 }$

Q8

$$n(n + 1)(n + 2) = 10u + a, a \in { 0, 4, 6 }$$ $$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_{10}$$ \begin{align*} 0 \cdot 1 \cdot 2 &= 0 \ 1 \cdot 2 \cdot 3 &= 6 \ 2 \cdot 3 \cdot 4 &= 4 \ 3 \cdot 4 \cdot 5 &= 0 \ 4 \cdot 5 \cdot 6 &= 0 \ 5 \cdot 6 \cdot 7 &= 0 \ 6 \cdot 7 \cdot 8 &= 6 \ 7 \cdot 8 \cdot 9 &= 4 \ 8 \cdot 9 \cdot 0 &= 0 \ 9 \cdot 0 \cdot 1 &= 0 \ \end{align*}