You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A. Properties of Order Relations in Integral Domains
Q1
$$a \leq b, b \leq c \implies a \leq c$$
4 cases:
$$a < b, b = c \implies a < c$$$$a < b, b < c \implies a < c$$$$a = b, b = c \implies a = c$$$$a = b, b < c \implies a < c$$
Q2
$$a \leq b \implies a + c \leq b + c$$
$$a < b \implies a + c < b + c$$$$a = b \implies a + c = b + c$$
Q3
$$a \leq b, c \geq 0 \implies ac \leq bc$$
$$a < b, c > 0 \implies ac < bc$$$$a < b, c = 0 \implies ac = 0 = bc$$$$a = b, c \geq 0 \implies ac = bc$$
Q4
$$c < 0 \implies -c > 0$$$$a < b \implies -ac < -bc$$$$-ac + bc < 0$$$$bc < ac$$
Q5
$$a < b$$$$a - b < 0$$$$\implies -b < -a$$
Q6
$$a + c < b + c \implies a + c - c < b \implies a < b$$
Q7
$$ac < bc, c > 0 \implies a < b$$
$$ac < bc$$$$\implies 0 < bc - ac$$$$\implies 0 < c(b -a)$$
but $c > 0 \implies b -a > 0$$$ b > a$$
Q8
$$a < b, c < d$$$$a - b < 0, 0 < d - c$$$$\implies a - b < d - c$$$$\implies a + c < b + d$$
D. Every Integral System Is Isomorphic to $\mathbb{Z}$
Q1
Ordered integral domain:
If $a < b$ then $a + c < b + c$$$0 < 1 \implies (n - 1) \cdot < n \cdot 1$$
If $a < b, b < c$, then $a < c$$$0 < n \cdot 1$$
Since $A$ is an integral system, every positive subset has a least element, so for $m < n, m \cdot 1 < n \cdot 1$
Q2
Injective: $h(m) = m \cdot 1 = h(n) = n \cdot 1$$\implies m = n$ since in an integral system if $x \neq y$ then either $x < y$ or $x > y$, and each element of the mapping $h(n) = n \cdot 1$ is distinct.
Surjective: every element of an integral system is a multiple of 1 (page 210).
$a \geq 0$ then $|a| = a$ and $|-a| = -(-a) = a$$$\implies |-a| = |a|$$$a < 0$ then $|a| = -a$ and $|-a| = -a$$$\implies |-a| = |a|$$
Q2
$$a \leq |a|$$
$a \geq 0$ then $|a| = a \implies a = |a|$
$a < 0$ then $|a| = -a \implies a < |a|$
Q3
$$a \geq -|a|$$
$a \geq 0$ then $-|a| = -a \implies a > -|a|$
$a < 0$ then $-|a| = a \implies a = -|a|$
Q4
$$b > 0$$$$|a| \leq b \iff -b \leq a \leq b$$$a \geq 0$ then $|a| = a \implies a \leq b$ and $b > 0$, then $-b < 0$ but $a \geq 0$ so $a > -b$
$a < 0$ then $|a| = -a \implies -a \leq b$, but $a < 0$ so $a < -a$ and $a < b$. Also $-a \leq b \implies a \geq -b$
For the opposite statement that $-b \leq a \leq b \implies |a| \leq b$
$a \geq 0$ then $|a| = a$ and $a \leq b \implies |a| \leq b$
$a < 0$ then $|a| = -a$ and $-b \leq a \implies -a \leq b \implies |a| \leq b$
\begin{align*}
1 \cdot (a + b) &= a + b = 1 \cdot a + 1 \cdot b \
(n + 1) \cdot (a + b) &= n \cdot (a + b) + a + b \
&= n \cdot a + a + n \cdot b + b \
&= (n + 1) \cdot a + (n + 1) \cdot b
\end{align*}
Q2
\begin{align*}
(1 + m) \cdot a &= a + m \cdot a \
(n + 1 + m) \cdot a &= (n + m + 1) \cdot a = (n + m) \cdot a + a &= n \cdot a + m \cdot a + a \
&= (n + 1) \cdot a + m \cdot a
\end{align*}
and vice versa
Q3
\begin{align*}
(1 \cdot a)b &= ab = (1 \cdot b)a \
[(n + 1) \cdot a]b &= (n \cdot a + a) b\
&= n \cdot ab + ab \
&= (n + 1) \cdot ab \
&= [(n + 1) \cdot b] a
\end{align*}
Q4
\begin{align*}
m \cdot (1 \cdot a) &= m \cdot a \
m \cdot [(n + 1) \cdot a] &= m \cdot (n \cdot a + a) \
&= mn \cdot a + m \cdot a \
&= (mn + m) \cdot a \
&= [m(n + 1)] \cdot a
\end{align*}
Q5
\begin{align*}
k \cdot a &= (k \cdot 1)a \
(k + 1) \cdot a &= [(k + 1) \cdot 1] \cdot a
\end{align*}
because $(k + 1) \cdot 1 = k \cdot 1 + 1$ and $1 \cdot a = a$
Q6
\begin{align*}
(1 \cdot a)(m \cdot b) &= a(m\cdot b) = m \cdot ab \
[(k + 1) \cdot a](m \cdot b) &= (k \cdot a + a)(m \cdot b) \
&= (k \cdot a)(m \cdot b) + a(m \cdot b) \
&= km \cdot ab + m \cdot ab \
&= [(k + 1)m] \cdot ab
\end{align*}
H. Principle of Strong Induction
Q1
$$k \in K \implies k + 1 \in K$$
Q2
by the statement above $S_k$ is true, implies all of $S_i$ is true for $i < k$ and so $S_{k + 1}$ is true.
$k$ the integers for which $S_k$ is true so implies with the statement above and $S_n$ is true for every $n$.
By the well ordering principle $b \notin K$ is the least element. By i. $b \neq 1$ so $b > 1$ but $b - 1 > 0$ and $b - 1 \in K$.