forked from Element-Research/dpnn
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Kmeans.lua
205 lines (164 loc) · 6.89 KB
/
Kmeans.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
-- Online (Hard) Kmeans layer.
local Kmeans, parent = torch.class('nn.Kmeans', 'nn.Module')
function Kmeans:__init(k, dim, scale)
parent.__init(self)
self.k = k
self.dim = dim
-- scale for online kmean update
self.scale = scale
assert(k > 0, "Clusters cannot be 0 or negative.")
assert(dim > 0, "Dimensionality cannot be 0 or negative.")
-- Kmeans centers -> self.weight
self.weight = torch.Tensor(self.k, self.dim)
self.gradWeight = torch.Tensor(self.weight:size())
self.loss = 0 -- within cluster error of the last forward
self.clusterSampleCount = torch.Tensor(self.k)
self:reset()
end
-- Reset
function Kmeans:reset(stdev)
local stdev = stdev or 1
self.weight:uniform(-stdev, stdev)
end
-- Initialize Kmeans weight with random samples from input.
function Kmeans:initRandom(input)
local inputDim = input:nDimension()
assert(inputDim == 2, "Incorrect input dimensionality. Expecting 2D.")
local noOfSamples = input:size(1)
local dim = input:size(2)
assert(dim == self.dim, "Dimensionality of input and weight don't match.")
assert(noOfSamples >= self.k, "Need atleast k samples for initialization.")
local indices = torch.zeros(self.k)
indices:random(1, noOfSamples)
for i=1, self.k do
self.weight[i]:copy(input[indices[i]])
end
end
-- Initialize using Kmeans++
function Kmeans:initKmeansPlus(input, p)
self.p = p or self.p or 0.95
assert(self.p>=0 and self.p<=1, "P value should be between 0-1.")
local inputDim = input:nDimension()
assert(inputDim == 2, "Incorrect input dimensionality. Expecting 2D.")
local noOfSamples = input:size(1)
local pcount = math.ceil((1-self.p)*noOfSamples)
if pcount <= 0 then pcount = 1 end
local initializedK = 1
self.weight[initializedK]:copy(input[torch.random(noOfSamples)])
initializedK = initializedK + 1
local clusters = self.weight.new()
local clusterDistances = self.weight.new()
local temp = self.weight.new()
local expandedSample = self.weight.new()
local distances = self.weight.new()
distances:resize(noOfSamples):fill(math.huge)
local maxScores = self.weight.new()
local maxIndx = self.weight.new()
for k=initializedK, self.k do
clusters = self.weight[{{initializedK-1, initializedK-1}}]
for i=1, noOfSamples do
temp:expand(input[{{i}}], 1, self.dim)
expandedSample:resize(temp:size()):copy(temp)
-- Squared Euclidean distance
expandedSample:add(-1, clusters)
clusterDistances:norm(expandedSample, 2, 2)
clusterDistances:pow(2)
distances[i] = math.min(clusterDistances:min(), distances[i])
end
maxScores, maxIndx = distances:sort(true)
local tempIndx = torch.random(pcount)
local indx = maxIndx[tempIndx]
self.weight[initializedK]:copy(input[indx])
initializedK = initializedK + 1
end
end
-- Kmeans updateOutput (forward)
function Kmeans:updateOutput(input)
local inputDim = input:nDimension()
assert(inputDim == 2, "Incorrect input dimensionality. Expecting 2D.")
local batchSize = input:size(1)
local dim = input:size(2)
assert(dim == self.dim, "Dimensionality of input and weight don't match.")
assert(input:isContiguous(), "Input is not contiguous.")
-- a sample copied k times to compute distance between sample and weight
self._expandedSamples = self._expandedSamples or self.weight.new()
-- distance between a sample and weight
self._clusterDistances = self._clusterDistances or self.weight.new()
self._temp = self._temp or input.new()
self._tempExpanded = self._tempExpanded or input.new()
-- Expanding inputs
self._temp:view(input, 1, batchSize, self.dim)
self._tempExpanded:expand(self._temp, self.k, batchSize, self.dim)
self._expandedSamples:resize(self.k, batchSize, self.dim)
:copy(self._tempExpanded)
-- Expanding weights
self._tempWeight = self._tempWeight or self.weight.new()
self._tempWeightExp = self._tempWeightExp or self.weight.new()
self._expandedWeight = self._expanedWeight or self.weight.new()
self._tempWeight:view(self.weight, self.k, 1, self.dim)
self._tempWeightExp:expand(self._tempWeight, self._expandedSamples:size())
self._expandedWeight:resize(self.k, batchSize, self.dim)
:copy(self._tempWeightExp)
-- x-c
self._expandedSamples:add(-1, self._expandedWeight)
-- Squared Euclidean distance
self._clusterDistances:norm(self._expandedSamples, 2, 3)
self._clusterDistances:pow(2)
self._clusterDistances:resize(self.k, batchSize)
self._minScore = self._minScore or self.weight.new()
self._minIndx = self._minIndx or torch.LongTensor()
self._minScore:min(self._minIndx, self._clusterDistances, 1)
self._minIndx:resize(batchSize)
self.output:resize(batchSize):copy(self._minIndx)
self.loss = self._minScore:sum()
return self.output
end
-- Kmeans has its own criterion hence gradInput are zeros
function Kmeans:updateGradInput(input, gradOuput)
self.gradInput:resize(input:size()):zero()
return self.gradInput
end
-- We define kmeans update rule as c -> c + scale * 1/n * sum_i (x-c).
-- n is no. of x's belonging to c.
-- With this update rule and gradient descent will be negative the gradWeights.
function Kmeans:accGradParameters(input, gradOutput, scale)
local scale = self.scale or scale or 1
assert(scale > 0 , " Scale has to be positive.")
-- Update cluster sample count
local batchSize = input:size(1)
self._cscAdder = self._cscAdder or self.weight.new()
self._cscAdder:resize(batchSize):fill(1)
self.clusterSampleCount:zero()
self.clusterSampleCount:indexAdd(1, self._minIndx, self._cscAdder)
-- scale * (x[k]-c[k]) where k is nearest cluster to x
self._gradWeight = self._gradWeight or self.gradWeight.new()
self._gradWeight:index(self.weight, 1, self._minIndx)
self._gradWeight:mul(-1)
self._gradWeight:add(input)
self._gradWeight:mul(-scale)
self._gradWeight2 = self._gradWeight2 or self.gradWeight.new()
self._gradWeight2:resizeAs(self.gradWeight):zero()
self._gradWeight2:indexAdd(1, self._minIndx, self._gradWeight)
-- scale/n * sum_i (x-c)
self._ccounts = self._ccounts or self.clusterSampleCount.new()
self._ccounts:resize(self.k):copy(self.clusterSampleCount)
self._ccounts:add(0.0000001) -- prevent division by zero errors
self._gradWeight2:cdiv(self._ccounts:view(self.k,1):expandAs(self.gradWeight))
self.gradWeight:add(self._gradWeight2)
end
function Kmeans:type(type, tensorCache)
if type then
-- prevent premature memory allocations
self._expandedSamples = nil
self._clusterDistances = nil
self._temp = nil
self._tempExpanded = nil
self._tempWeight = nil
self._tempWeightExp = nil
self._expandedWeight = nil
self._minScore = nil
self._minIndx = nil
self._cscAdder = nil
end
return parent.type(self, type, tensorCache)
end