-
Notifications
You must be signed in to change notification settings - Fork 5
/
numberRec.py
281 lines (242 loc) · 11 KB
/
numberRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
import sys
from random import shuffle
import librosa
import tensorflow as tf
import tensorflow.keras as keras
import numpy as np
import pickle
# 原始数据集
dataset_dir = './recordings/'
# 预处理的数据集
dataset_pickle = "./dataset.pickle"
def read_files(files):
labels = []
features = []
for file in files:
ans = int(file[0])
wave, sr = librosa.load(dataset_dir + file, mono=True)
label = keras.utils.to_categorical(ans, 10)
labels.append(label)
mfcc = librosa.feature.mfcc(wave, sr)
mfcc = np.pad(mfcc, ((0, 0), (0, 100 - len(mfcc[0]))), mode='constant', constant_values=0)
features.append(np.array(mfcc))
return np.array(features), np.array(labels)
# 读取数据集文件列表,并将其划分为训练集,验证集以及测试集
def load_files():
files = os.listdir(dataset_dir)
wav_files = []
for wav in files:
if not wav.endswith(".wav"): continue
wav_files.append(wav)
if not wav_files:
print("未找到数据集")
# 重排数据集,保证训练,测试还有验证集中基本上各个类别的数据都有
shuffle(wav_files)
# 划分数据集
nfiles = len(wav_files)
ntrain = int(nfiles * 0.7)
nvalidation = int(nfiles * 0.2)
return wav_files[ : ntrain], wav_files[ntrain : ntrain + nvalidation], \
wav_files[ntrain + nvalidation : ]
def mean_normalize(features):
std_value = features.std()
mean_value = features.mean()
return (features - mean_value) / std_value
class CNNConfig():
# 网络结构
filter_sizes = [2, 3, 4, 5]
num_filters = 64
hidden_dim = 256
# 训练过程
learning_rate = 0.001
num_epochs = 100
batch_size = 256
dropout_keep_prob = 0.5
print_per_batch = 100 # 训练过程中,每100次batch迭代,打印训练信息
save_tb_per_batch = 200
class ASRCNN(object):
def __init__(self, config, width, height, num_classes): # 20,100
self.config = config
# 训练过程
# 输入的语音变成了一张特征图
self.input_x = tf.placeholder(tf.float32, [None, width, height], name='input_x')
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name='input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
# input_x = tf.reshape(self.input_x, [-1, height, width])
# 将图由width * height变成了height * width
input_x = tf.transpose(self.input_x, [0, 2, 1])
pooled_outputs = []
# 也就是说有一系列不同size的filter
for i, filter_size in enumerate(self.config.filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
print("conv-maxpool-%s" % filter_size)
conv = tf.layers.conv1d(input_x, self.config.num_filters, filter_size, activation=tf.nn.relu)
print(conv.shape)
pooled = tf.reduce_max(conv, reduction_indices=[1])
print(pooled.shape)
pooled_outputs.append(pooled)
num_filters_total = self.config.num_filters * len(self.config.filter_sizes) # 64*4
pooled_reshape = tf.reshape(tf.concat(pooled_outputs, 1), [-1, num_filters_total])
fc = tf.layers.dense(pooled_reshape, self.config.hidden_dim, activation=tf.nn.relu, name='fc1')
fc = tf.contrib.layers.dropout(fc, self.keep_prob)
# 分类器
self.logits = tf.layers.dense(fc, num_classes, name='fc2')
self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1, name="pred") # 预测类别
# 损失函数,交叉熵
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
self.loss = tf.reduce_mean(cross_entropy)
# 优化器
self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)
# 准确率
correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
def preprocess():
if not os.path.isfile(dataset_pickle):
train_files, valid_files, test_files = load_files()
train_features, train_labels = read_files(train_files)
train_features = mean_normalize(train_features)
print('read train files down')
valid_features, valid_labels = read_files(valid_files)
valid_features = mean_normalize(valid_features)
print('read valid files down')
test_features, test_labels = read_files(test_files)
test_features = mean_normalize(test_features)
print('read test files down')
print('预处理数据集写入%s' % dataset_pickle)
pickle_out = open(dataset_pickle,"wb")
pickle.dump((train_features, train_labels, valid_features, valid_labels,
test_features, test_labels), pickle_out)
pickle_out.close()
else:
print('从%s中加载预处理数据集' % dataset_pickle)
pickle_in = open(dataset_pickle,"rb")
(train_features, train_labels, valid_features, valid_labels,
test_features, test_labels) = pickle.load(pickle_in)
pickle_in.close()
return train_features, train_labels, \
valid_features, valid_labels, test_features, test_labels
def batch_iter(features, labels, batch_size):
'''
一个一个batch地生成训练数据
'''
assert len(features) == len(labels), \
"feature and label size do not match!"
for i in range(int(len(features) / batch_size)):
begin = i * batch_size
end = (i + 1) * batch_size
yield features[begin : end], labels[begin : end]
def train(argv=None):
# 预处理数据集从数据集中提取特征太过费时
# 因此我们将提取好的数据集特征存储在文件中
train_features, train_labels, \
valid_features, valid_labels, \
test_features, test_labels = preprocess()
width = 20 # mfcc features
height = 100 # (max) length of utterance
classes = 10 # digits
config = CNNConfig
cnn = ASRCNN(config, width, height, classes)
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
checkpoint_path = os.path.join('cnn_model', 'model.ckpt')
tensorboard_train_dir = 'tensorboard/train'
tensorboard_valid_dir = 'tensorboard/valid'
if not os.path.exists(tensorboard_train_dir):
os.makedirs(tensorboard_train_dir)
if not os.path.exists(tensorboard_valid_dir):
os.makedirs(tensorboard_valid_dir)
tf.summary.scalar("loss", cnn.loss)
tf.summary.scalar("accuracy", cnn.acc)
merged_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(tensorboard_train_dir)
valid_writer = tf.summary.FileWriter(tensorboard_valid_dir)
total_batch = 0
for epoch in range(config.num_epochs):
print('Epoch:', epoch + 1)
batch_train = batch_iter(train_features, train_labels, config.batch_size)
for x_batch, y_batch in batch_train:
total_batch += 1
# 训练一个batch
train_feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.keep_prob: config.dropout_keep_prob
}
session.run(cnn.optim, feed_dict=train_feed_dict)
# 检查loss以及acc
if total_batch % config.print_per_batch == 0:
# 检查训练的batch的loss以及acc
train_loss, train_accuracy = session.run(
[cnn.loss, cnn.acc], feed_dict=train_feed_dict)
# 检查验证集的batch的loss以及acc
valid_feed_dict = {
cnn.input_x: valid_features,
cnn.input_y: valid_labels,
cnn.keep_prob: config.dropout_keep_prob
}
valid_loss, valid_accuracy = session.run(
[cnn.loss, cnn.acc], feed_dict=valid_feed_dict)
print('Steps:' + str(total_batch))
print('train_loss:' + str(train_loss) +
' train accuracy:' + str(train_accuracy) +
'\tvalid_loss:' + str(valid_loss) +
' valid accuracy:' + str(valid_accuracy))
# 存储相关统计信息到tensorboard
if total_batch % config.save_tb_per_batch == 0:
train_s = session.run(merged_summary, feed_dict=train_feed_dict)
train_writer.add_summary(train_s, total_batch)
valid_s = session.run(merged_summary, feed_dict=valid_feed_dict)
valid_writer.add_summary(valid_s, total_batch)
saver.save(session, checkpoint_path, global_step=epoch)
test_feed_dict = {
cnn.input_x: test_features,
cnn.input_y: test_labels,
cnn.keep_prob: config.dropout_keep_prob
}
test_loss, test_accuracy = session.run([cnn.loss, cnn.acc],
feed_dict=test_feed_dict)
print('test_loss:' + str(test_loss) + ' test accuracy:' + str(test_accuracy))
# 测试数据准备,读取文件并提取音频特征
def read_test_wave(path):
files = os.listdir(path)
feature = []
features = []
label = []
for wav in files:
# print(wav)
if not wav.endswith(".wav"): continue
ans = int(wav[0])
wave, sr = librosa.load(path+wav, mono=True)
label.append(ans)
# print("真实lable: %d" % ans)
mfcc = librosa.feature.mfcc(wave, sr)
mfcc = np.pad(mfcc, ((0, 0), (0, 100 - len(mfcc[0]))), mode='constant', constant_values=0)
feature.append(np.array(mfcc))
features = mean_normalize(np.array(feature))
return features,label
def test(path):
features, label = read_test_wave(path)
print('loading ASRCNN model...')
with tf.Session() as sess:
saver = tf.train.import_meta_graph('cnn_model/model.ckpt-999.meta')
saver.restore(sess, tf.train.latest_checkpoint('cnn_model'))
graph = tf.get_default_graph()
input_x = graph.get_tensor_by_name("input_x:0")
pred = graph.get_tensor_by_name("pred:0")
keep_prob = graph.get_tensor_by_name("keep_prob:0")
for i in range(0, len(label)):
feed_dict = {input_x: features[i].reshape(1,20,100), keep_prob: 1.0}
test_output = sess.run(pred, feed_dict=feed_dict)
print("="*15)
print("真实lable: %d" % label[i])
print("识别结果为:"+str(test_output[0]))
print("Congratulation!")
if __name__ == '__main__':
if len(sys.argv) == 2 and sys.argv[1] == 'train':
train()
else:
test()