-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lecture_10.html
691 lines (565 loc) · 25.1 KB
/
lecture_10.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>reveal.js – NNML 2020</title>
<meta name="description" content="A framework for easily creating beautiful presentations using HTML">
<meta name="author" content="Hakim El Hattab">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="dist/reset.css">
<link rel="stylesheet" href="dist/reveal.css">
<link rel="stylesheet" href="dist/theme/nmilab.css" id="theme">
<!-- Theme used for syntax highlighting of code -->
<link rel="stylesheet" href="plugin/highlight/monokai.css" id="highlight-theme">
<link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/dreampulse/computer-modern-web-font/master/fonts.css">
<link rel="stylesheet" type="text/css" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css">
<link rel="stylesheet" type="text/css" href="lib/css/monokai.css">
<link
rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.0.0/animate.min.css"
/>
<link rel="stylesheet" href="reveal.js-plugins/appearance/appearance.css" />
<link rel="stylesheet" href="plugin/highlight/monokai.css" id="highlight-theme" />
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<script async defer src="https://buttons.github.io/buttons.js"></script>
</head>
<body>
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section data-external="title.html" data-vertical-align-top data-background-color=#B2BA67 ></section>
<section data-markdown data-vertical-align-top data-background-color=#B2BA67><textarea data-template>
<h1> Lecture 10: Brain-Inspired Neural Networks <br/> </h1>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Anatomy of the Neuron</h2>
<img src="images/neuron_drawing.png" />
- Dendrites: act as inputs ports
- Soma: the body of the cell, usually where inputs converge and where action potentials are generated
- Axon: propagates action potentials along to other neurons
- Terminal Boutons (Synapses): act as outputs of the neuron
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Membrane potential</h2>
<img src="images/bear-03-11.png" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Action Potentials and the Axon</h2>
<img src="images/neuron_drawing.png" />
<img src="images/bear-04-02-1.png" />
<p class=pl> Neurons communicate by all-or-none events called Action Potentials, or ``Spikes''</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> "Biological" neuron model: The Leaky Integrate and Fire Neuron. </h2>
<div class=row>
<div class=column>
<ul>
<li/> Membrane Voltage
$$
\begin{split}
U_i(t) = & V_i(t),\\
\tau_{mem}\frac{\mathrm{d}}{\mathrm{d}t} V_i(t) = & - V_i(t) + I_i(t),\\
\end{split}
$$
<li class=fragment /> Output Spike
$$
S_i = \Theta(U_i)
$$
<li class=fragment /> Synaptic Currents
$$
\begin{split}
I_{i}(t) = \sum_{j\in \text{pre}} W_{ij} S_j(t),
\end{split}
$$
</ul>
</div>
<div class=column>
<img src="images/leaky_if.png" />
</div>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> "Biological" neuron model: The Leaky Integrate and Fire Neuron. </h2>
<img src="images/leaky_if.png" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Recurrent Neural Networks and Working Memory </h2>
<div class=row>
<div class=column>
<p>Working Memory:</p>
<ul>
<li /> A type of short-term memory
<li /> Limited in capacity
<li /> Task- and sensory modality-dependent
<li /> Necessary for cognitive control
</ul>
</div>
<div class=column>
<img src="images/brain_wm.png" />
Human brain areas for working
memory of face identity and
location
</div>
</div>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Neural Correlates of Working Memory </h2>
<img src="images/primate_task.png" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Working Memory of Cognitive Control </h2>
<img src="images/12ax.png" class=stretch />
<p class=ref>O’Reilly and Frank, 2006</p>
<p class=pl> How does the brain implement working memory? </p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Recurrent Neural Networks (RNNs) in Neuroscience </h2>
<ul>
<li > Most models hypothesize that short term memory is a process supported by recurrent connections </li>
<li > An RNN is a network in which the output feeds back into the network (A: Feedforward, B: Recurrent) </li>
<img src="images/feedfoward_vs_recurrent.png" class=small />
<li class=fragment > The majority of connections in the brain are recurrent
<div class=row>
<div class=column>
<img src="images/cortical_microcircuit.png" />
<p class=ref> Douglas and Martin, 1989</p>
</div>
<div class=column>
<blockquote>
... physically mapped the synapses on the dendritic trees (...) in layer 4 of the cat primary visual cortex and found that only 5% of the excitatory synapses arose from the lateral geniculate nucleus (LGN)
</blockquote>
<p class=ref> Binzegger et al. 2004</p>
</div>
</div>
</li>
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Recurrent Neural Networks (RNNs) in Neuroscience </h2>
<ul>
<li /> Recurrent connectivity can support sustained activity
<div class=row>
<div class=column>
<img src="images/F1.large.jpg" />
</div>
<div class=column>
<img src="images/F2.large.jpg" class=large />
</div>
</div>
<p class=ref> Murray et al. 2017 </p>
<li class=fragment /> In the brain, how do such neural networks learn?
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Types of Synaptic Plasticity in the Brain</h2>
<div class=row>
<div class=column >
<center>Long-Term Plasticity</center>
</div>
<div class=column >
<center>Short-Term Plasticity</center>
</div>
</div>
<div class=row>
<div class=column >
<img src="images/ltp.png" />
</div>
<div class=column >
<img src="images/stp.jpg" />
</div>
<p class=ref>Tsodyks_Markram97_neur-code</p>
</div class=row>
<div class=row>
<div class=column >
<ul>
<li/> Induced over seconds, persistance over >10 hours
<li/> Many mechanisms: Change in number of Receptors, Release Probability, ...
</ul>
</div>
<div class=column >
<ul>
<li/> Induced over fractions of a second
<li/> Recovery over seconds
<li/> Change in probability of vesicle release, ...
</ul>
</div>
</div class=row>
<p class=ref>Feldman09_syna-mech<p>
<p class=ref>Slide modified from Gerstner <i>et al.</i> 2015</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Hebban Learning</h2>
<div class=row>
<div class=column>
<img src="images/gerstner_hebb_rule.png" class=small />
</div>
<div class=column>
<img src="images/hebb_assemblies.jpg" />
</div>
</div>
When an axon of cell $j$ repeatedly or persistently takes part in activating cell $i$, then $j$'s efficiency as one of the cells activating $i$ is increased
<p class=ref>Hebb49_orga-beha</p>
$$
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) = \eta \nu_i \nu_j
$$
<div class=row>
<div class=column>
<ul>
<li/> Plasticity rule operating on local information
<li/> Captures correlations in activity
<li/> Unsupervised
</ul>
</div>
<div class=column>
<blockquote>''Neurons that fire together wire together''</blockquote>
</div>
</div>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Hebb's Cell Assembly</h2>
<img src="images/bear-24-05.png" />
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Generalized Hebbian Learning</h2>
Generalized Hebbian learning: Introduce dependence on pre-synaptic and post-synaptic activities, and the weight itself:
$$
\begin{split}
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) &= F(w_{ij}, \nu_i, \nu_j)\\\\
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) &= a_0(w_{ij}) + a_1^{pre}(w_{ij})\nu_j + a_1^{post}(w_{ij})\nu_i + a_2(w_{ij})\nu_i \nu_j + \dots \\\\
\end{split}
$$
<center>
<table>
<tr>
<td>Pre (Index j)</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Post (Index i) </td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr class=fragment >
<td>$\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) \propto \nu_i \nu_j$</td><td>+ </td><td> 0 </td><td> 0 </td><td> 0 </td>
</tr>
<tr class=fragment >
<td>$\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) \propto \nu_i \nu_j - c$</td><td>+ </td><td> - </td><td> - </td><td> - </td>
</tr>
<tr class=fragment >
<td> $\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) \propto (\nu_i - c) \nu_j$ </td><td>(+) </td><td> 0 </td><td> - </td><td> 0 </td>
</tr>
<tr class=fragment >
<td>$\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) \propto (\nu_i - \langle \nu_i \rangle)$</td><td>+ </td><td> - </td><td> - </td><td> + </td>
</tr>
</table>
</center>
<p class=ref>Gerstner_Kistler02_spik-neur</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Modulated Hebb rule</h2>
<b>Modulated Hebb rule: Neuromodulators + Hebbian Learning</b>
$$
\begin{split}
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) &= F(w_{ij}, \nu_i, \nu_j, mod(t))\\\\
\end{split}
$$
Example causes of neuromodulation can be rewards, error, attention, novelty.
<b>Examples:</b>
<ul>
<li class=fragment> Reinforcement learning:
$$
\begin{split}
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) \propto Reward(t) \nu_i \nu_j\\
\end{split}
$$
<p class=ref>Florian07_rein-lear</p>
</li>
<li class=fragment > Supervised Learning:
$$
\begin{split}
\frac{\mathrm{d}}{\mathrm{d} t} w_{ij}(t) &= Error_i(t) a_1^{pre}\nu_j\\
\end{split}
$$
</li>
</ul>
<p class=pl> Some modulated synaptic plasticity rules are recently called three factor rules. </p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Spike-Timing Dependent Plasticity</h2>
<img src="images/bi_poo_scholarpedia.jpeg"/>
<p class=ref>Bi_Poo98_syna-modi</p>
<p class=ref>Jesper Sjostrom and Wulfram Gerstner (2010), Scholarpedia, 5(2):1362.</p>
<ul>
<li>$W$: Learning Window</li>
<li>$t_i^n$: $n$th spike time of post-synaptic neuron $i$</li>
<li>$t_j^f$: $f$th spike time of pre-synaptic neuron $i$</li>
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Spike-Timing Dependent Plasticity (STDP)</h2>
<img src="images/bi_poo_scholarpedia.jpeg" />
<p class=ref>Gerstner_Kistler02_spik-neur</p>
Spike-Time Dependent Plasticity Rule:
$$
\Delta w_j = \sum_{f=1}^N \sum_{n=1}^N W(t_i^n - t_j^f)
$$
<p class=ref>Jesper Sjostrom and Wulfram Gerstner (2010), Scholarpedia, 5(2):1362.</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>The Concept of Locality</h2>
For computation to occur on a physical substrate, information much be spatially and temporally local.
<img src=images/local_information.png />
<p class=ref>Neftci_etal19_surrgrad</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Back-Propagating Action Potentials</h2>
<b>STDP requires synapses to sense post-synaptic neuron spike times</b>
<div class=row>
<div class=column > Long-term potentiation is regulated by coincidence of postsynaptic APs and EPSPs
<img src=images/Markram97_Fig_1.png ></img>
<p class=ref>Markram_etal97</p>
</div>
<div class=column > Somadendritic Backpropagation of Action Potentials in Cortical Pyramidal Cells
<img src=images/Buzsaki_Kandel98_Fig2.png />
<p class=ref>Buzsaki and Kandel, J. Neurophysiol. 79: 1587--1591, 1998</p>
</div>
</div class=row>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Spike-Timing Dependent Plasticity (STDP) Implementation</h2>
Online implementation of the Spike-Time Dependent Plasticity Rule using pre-synaptic trace $P_j$ and post-synaptic trace $P_i$:
$$
\begin{split}
\tau_+{\mathrm{d} \over \mathrm{d}t}P_j &= -P_j + S^{pre}_j\\\\
\tau_-{\mathrm{d}\over \mathrm{d}t} P_i &= -P_i + S^{post}_i\\\\
{\mathrm{d} \over \mathrm{d}t}w_{ij} &= a_+ P_j(t) S^{post}_i + a_- P_i(t) S^{pre}_j
\end{split}
$$
<ul>
<li>$\delta(t)$: Delta Dirac function (= spike at time $t$)</li>
<li>$a_+$: Amplitude of LTP $a_-$: Amplitude of LTD</li>
<li>$\tau_+$: Temporal window of LTP</li>
<li>$\tau_-$: Temporal window of LTD</li>
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>STDP as Spike-Based Hebbian Learning</h2>
<img src=images/learning_window_Gerstner_Kistler02.png />
If the pre- and post-synaptic neuron spike times are independent:
$$
\langle \frac{\mathrm{d}}{\mathrm{d}t} w_{ij} \rangle \cong \nu_i \nu_j \underbrace{\int W(s) \mathrm{d}s}_{\text{Area under learning window}}
$$
</textarea></section>
<section data-markdown><textarea data-template>
<h2>STDP as Spike-Based Generalized Hebbian Learning</h2>
<p>A more general spike-time dependent plasticity rule</p>
$$
\frac{\mathrm{d}}{\mathrm{d}t} w_j = a_0(w_{ij}) + a_1^{pre}(w_{ij}) S^{pre}_j + a_1^{post} (w_{ij}) S^{post}_i + a_+ P_j(t) S^{post}_i + a_- P_i(t) S^{pre}_j
$$
<p> If spike times are independent, the temporal average of generalized STDP implements the generalized Hebb rule:</p>
$$
\langle \frac{\mathrm{d}}{\mathrm{d}t} w_{ij} \rangle \cong a_0(w_{ij}) + a_1^{pre}(w_{ij}) \nu_j + a_1^{post}(w_{ij})\nu_i + \nu_i \nu_j \int W(s) \mathrm{d}s
$$
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Notes about STDP</h2>
<ul>
<li/> Rate-based models are consistent with STDP
<li/> Spike-time dependence depends on synapse location wrt soma
<li/> The exponential fit of STDP is for computational convenience
<li/> Update in original model is relative
<img src=images/Bi_Poo_Fig_7.png />
<li/> STDP is not derived from computational requirements
</ul>
<p class=pl >STDP is a measurement, not an accurate mechanistic model!</p>
</textarea></section>
<section data-markdown><textarea data-template>
<h2>Normative Models of Synaptic Plasticity</h2>
<ul>
<li/> Rather than building synaptic plasticity from the bottom-up (as in STDP) Normative model strat with a mathematical model, and make hypotheses about how these could be implemented in synapses.
<li/> Machine learning is a common source of inspiration for normative modeling
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Models of RNNs in Neuroscience: Liquid State Machines</h2>
<img src="images/lsm.svg">
<p class=ref>Maass et al. 2002</p>
<ul>
<li/> One of the earlier trainable models of RNNs
<li/> Also known as Reservoir Learning, Extreme Learning Machines
<li/> Only readout connections are trained in a gradient based fashion. Easy to learn, but does not scale well.
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Models of RNNs in Neuroscience: FORCE Learning</h2>
<div class=row>
<div class=column>
<img src="images/susillo1.png" class=large />
</div>
<div class=column>
<img src="images/susillo2.png">
</div>
</div>
<p class=ref>Susillo and Abbott, 2009</p>
<ul>
<li/> Some recurrent connections are trained
<li/> Does not take into account the history of the activities
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Models of RNNs in Neuroscience: Surrogate Gradient Learning</h2>
<div class=row>
<img src="images/sgdecolle.png">
</div>
<p class=ref>Neftci, Mostafa, Zenke, 2019</p>
<ul>
<li/> Models biological neurons as artificial recurrent neural networks and uses approximate gradient-based learning
<li/> Recurrent connections are trained with partial knowledge of the history
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> "Biological" neuron model: The Leaky Integrate and Fire Neuron. </h2>
<div>
$$
\begin{align*}
U^{t+1} & = \beta U^t + (1-\beta) W S^t_{in} - S^t \tag{Membrane Potential}\\
S^t &= \Theta(U^t-1) \tag{Spike & Reset} \\
\beta & = \exp(\frac{t}{\tau_{mem}})\\
\end{align*}
$$
</div>
<img src="images/leaky_if.png" />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/surr_grad_1.svg" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/surr_grad_2.svg" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/surr_grad_3.svg" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/surr_grad_4.svg" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/surr_grad_5.svg" class=stretch />
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Surrogate Gradient Learning </h2>
<img src="images/sg_loss_cartoon.svg" class=large />
<ul>
<li/> With surrogate gradients, we can train any biological neuron dynamics using gradient backpropagation
<li/> By approximating the temporal credit assignment problem, the gradient descent update is compatible with synaptic plasticity dynamics
</ul>
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-0S0iL0CVh72tXdBrZglZ5RPilcXSwik?usp=sharing)
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Deep Continuous Local Learning (DECOLLE) </h2>
<h3> </h3>
<div class=row>
<img src="images/decolle.png">
</div>
<p class=ref>Kaiser, Mostafa, Neftci, 2019</p>
<ul>
<li/> State-of-the-art learning of spatio-temporal patterns
</ul>
</textarea></section>
<section data-markdown><textarea data-template>
<h2> Why use recurrent neural networks</h2>
<ul>
<li>
<div><div class=column >Few recurrent connections in shallow neural networks can give them similar power to deep neural networks</div><div class=column >
<img src="images/cornet-brainscore.png" class=large />
<p class=ref>Schrimpf et al. 2019</p></div></div></li>
<li class=fragment >Recurrent neural networks are Turing complete, <em> i.e.</em> they can theoretically emulated any computable algorithm</li>
<li class=fragment >We may not have found the right way to train recurrent neural networks yet <p class=ref>Miller and Hardt, International Conference on Learning Representations, 2019</p> </li>
<li class=fragment >The real world is continuous-time, physical computing systems (<em>e.g.</em> biological neurons) operate under real-time constraints.</li>
</ul>
</textarea></section>
</div>
</div>
<script src="dist/reveal.js"></script>
<script src="plugin/zoom/zoom.js"></script>
<script src="plugin/notes/notes.js"></script>
<script src="plugin/math/math.js"></script>
<script src="plugin/search/search.js"></script>
<script src="plugin/markdown/markdown.js"></script>
<script src="plugin/highlight/highlight.js"></script>
<script src="reveal.js-plugins/menu/menu.js"></script>
<script src="reveal.js-plugins/audio-slideshow/plugin.js"></script>
<script src="reveal.js-plugins/audio-slideshow/recorder.js"></script>
<script src="reveal.js-plugins/audio-slideshow/RecordRTC.js"></script>
<script src="reveal.js-plugins/chalkboard/plugin.js"></script>
<script src="reveal.js-plugins/external/external.js"></script>
<script src="reveal.js-plugins/externalcode/externalcode.js"></script>
<script src="reveal.js-plugins/appearance/appearance.js"></script>
<script>
Reveal.configure({ pdfMaxPagesPerSlide: 1, hash: true, slideNumber: true})
// Also available as an ES module, see:
// https://revealjs.com/initialization/
Reveal.initialize({
mouseWheel: false,
width: 1280,
height: 720,
margin: 0.0,
navigationMode: 'grid',
transition: 'fade',
controls: true,
progress: true,
center: true,
hash: true,
// Learn about plugins: https://revealjs.com/plugins/
plugins: [Appearance, RevealZoom, RevealSearch, RevealMarkdown, RevealHighlight, RevealAudioRecorder, RevealAudioSlideshow, RevealMath, RevealExternal, Externalcode, RevealMenu],
menu: { // Menu works best with font-awesome installed: sudo apt-get install fonts-font-awesome
themes: false,
transitions: false,
markers: true,
hideMissingTitles: true,
custom: [
{ title: 'Plugins', icon: '<i class="fa fa-external-link-alt"></i>', src: 'toc.html' },
{ title: 'About', icon: '<i class="fa fa-info"></i>', src: 'about.html' }
]
},
audio: {
prefix: 'audio/lecture_10/', // audio files are stored in the "audio" folder
suffix: '.ogg', // audio files have the ".ogg" ending
textToSpeechURL: null, // the URL to the text to speech converter
defaultNotes: false, // use slide notes as default for the text to speech converter
defaultText: false, // use slide text as default for the text to speech converter
advance: 300, // advance to next slide after given time in milliseconds after audio has played, use negative value to not advance
autoplay: false, // automatically start slideshow
defaultDuration: 1.0, // default duration in seconds if no audio is available
defaultAudios: true, // try to play audios with names such as audio/1.2.ogg
playerOpacity: 0.5, // opacity value of audio player if unfocused
playerStyle: 'position: fixed; bottom: 4px; left: 25%; width: 50%; height:75px; z-index: 33;', // style used for container of audio controls
startAtFragment: false, // when moving to a slide, start at the current fragment or at the start of the slide
},
// ...
keyboard: {
82: function() { Recorder.toggleRecording(); }, // press 'r' to start/stop recording
90: function() { Recorder.downloadZip(); }, // press 'z' to download zip containing audio files
84: function() { Recorder.fetchTTS(); } // press 't' to fetch TTS audio files
}
});
</script>
</body>
</html>