forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CMul.lua
135 lines (111 loc) · 3.66 KB
/
CMul.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
local CMul, parent = torch.class('nn.CMul', 'nn.Module')
function CMul:__init(...)
parent.__init(self)
local arg = {...}
self.size = torch.LongStorage()
local n = #arg
if n == 1 and torch.type(arg[1]) == 'torch.LongStorage' then
self.size:resize(#arg[1]):copy(arg[1])
else
self.size:resize(n)
for i=1,n do
self.size[i] = arg[i]
end
end
self.weight = torch.Tensor(self.size)
self.gradWeight = torch.Tensor(self.size)
self.output:resize(self.size)
self:reset()
end
function CMul:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1./math.sqrt(self.weight:nElement())
end
self.weight:uniform(-stdv,stdv)
end
function CMul:updateOutput(input)
-- lazy-initialize
self._output = self._output or input.new()
self._weight = self._weight or input.new()
self._expand = self._expand or input.new()
self._repeat = self._repeat or input.new()
self.output:resizeAs(input):copy(input)
if input:nElement() == self.weight:nElement() then
self._output:view(self.output, -1)
self._weight:view(self.weight, -1)
self._output:cmul(self._weight)
else
local batchSize = input:size(1)
self._output:view(self.output, batchSize, -1)
self._weight:view(self.weight, 1, -1)
self._expand:expandAs(self._weight, self._output)
if torch.type(input) == 'torch.CudaTensor' then
self._repeat:resizeAs(self._expand):copy(self._expand)
self._output:cmul(self._repeat)
else
self._output:cmul(self._expand)
end
end
return self.output
end
function CMul:updateGradInput(input, gradOutput)
if not self.gradInput then
return
end
self._gradOutput = self._gradOutput or input.new()
self._gradInput = self._gradInput or input.new()
self.gradInput:resizeAs(input):zero()
if self.weight:nElement() == gradOutput:nElement() then
self.gradInput:addcmul(1, self.weight, gradOutput)
else
local batchSize = input:size(1)
nn.utils.contiguousView(self._gradOutput, gradOutput, batchSize, -1)
nn.utils.contiguousView(self._gradInput, self.gradInput, batchSize, -1)
self._weight:view(self.weight, 1, -1)
self._expand:expandAs(self._weight, self._gradOutput)
if torch.type(input) == 'torch.CudaTensor' then
self._repeat:resizeAs(self._expand):copy(self._expand)
self._gradInput:addcmul(1, self._repeat, self._gradOutput)
else
self._gradInput:addcmul(1, self._expand, self._gradOutput)
end
end
return self.gradInput
end
function CMul:accGradParameters(input, gradOutput, scale)
scale = scale or 1
self._input = self._input or input.new()
self._gradWeight = self._gradWeight or input.new()
self._sum = self._sum or input.new()
if self.weight:nElement() == gradOutput:nElement() then
self.gradWeight:addcmul(scale, input, gradOutput)
else
local batchSize = input:size(1)
nn.utils.contiguousView(self._input, input, batchSize, -1)
nn.utils.contiguousView(self._gradOutput, gradOutput, batchSize, -1)
self._gradWeight:view(self.gradWeight, 1, -1)
self._repeat:cmul(self._input, self._gradOutput)
self._sum:sum(self._repeat, 1)
self._gradWeight:add(scale, self._sum)
end
end
function CMul:type(type, tensorCache)
if type then
self:clearState()
end
return parent.type(self, type, tensorCache)
end
function CMul:clearState()
nn.utils.clear(self, {
'_input',
'_output',
'_weight',
'_gradWeight',
'_expand',
'_repeat',
'_sum',
})
return parent.clearState(self)
end