Skip to content

Commit

Permalink
Support Llama index for vLLM (#665)
Browse files Browse the repository at this point in the history
Signed-off-by: Xinyao Wang <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
XinyaoWa and pre-commit-ci[bot] authored Sep 11, 2024
1 parent 267fb02 commit 8e3f553
Show file tree
Hide file tree
Showing 18 changed files with 720 additions and 1 deletion.
8 changes: 8 additions & 0 deletions .github/workflows/docker/compose/llms-compose-cd.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,11 @@ services:
context: vllm-openvino
dockerfile: Dockerfile.openvino
image: ${REGISTRY:-opea}/vllm-openvino:${TAG:-latest}
llm-vllm-llamaindex:
build:
dockerfile: comps/llms/text-generation/vllm/llama_index/Dockerfile
image: ${REGISTRY:-opea}/llm-vllm-llamaindex:${TAG:-latest}
llm-vllm-llamaindex-hpu:
build:
dockerfile: comps/llms/text-generation/vllm/llama_index/dependency/Dockerfile.intel_hpu
image: ${REGISTRY:-opea}/llm-vllm-llamaindex-hpu:${TAG:-latest}
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,4 @@ docker build \
-t opea/llm-vllm:latest \
--build-arg https_proxy=$https_proxy \
--build-arg http_proxy=$http_proxy \
-f comps/llms/text-generation/vllm/docker/Dockerfile .
-f comps/llms/text-generation/vllm/langchain/Dockerfile .
28 changes: 28 additions & 0 deletions comps/llms/text-generation/vllm/llama_index/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM ubuntu:22.04

RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
python3 \
python3-pip

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

USER user

COPY comps /home/user/comps

RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/comps/llms/text-generation/vllm/llama_index/requirements.txt


ENV PYTHONPATH=$PYTHONPATH:/home/user

WORKDIR /home/user/comps/llms/text-generation/vllm/llama_index

ENTRYPOINT ["bash", "entrypoint.sh"]
189 changes: 189 additions & 0 deletions comps/llms/text-generation/vllm/llama_index/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
# vLLM Endpoint Service

[vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products). This guide provides an example on how to launch vLLM serving endpoint on CPU and Gaudi accelerators.

## 🚀1. Set up Environment Variables

```bash
export HUGGINGFACEHUB_API_TOKEN=<token>
export vLLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL="meta-llama/Meta-Llama-3-8B-Instruct"
```

For gated models such as `LLAMA-2`, you will have to pass the environment HUGGINGFACEHUB_API_TOKEN. Please follow this link [huggingface token](https://huggingface.co/docs/hub/security-tokens) to get the access token and export `HUGGINGFACEHUB_API_TOKEN` environment with the token.

## 🚀2. Set up vLLM Service

First of all, go to the server folder for vllm.

```bash
cd dependency
```

### 2.1 vLLM on CPU

First let's enable VLLM on CPU.

#### Build docker

```bash
bash ./build_docker_vllm.sh
```

The `build_docker_vllm` accepts one parameter `hw_mode` to specify the hardware mode of the service, with the default being `cpu`, and the optional selection can be `hpu`.

#### Launch vLLM service

```bash
bash ./launch_vllm_service.sh
```

If you want to customize the port or model_name, can run:

```bash
bash ./launch_vllm_service.sh ${port_number} ${model_name}
```

### 2.2 vLLM on Gaudi

Then we show how to enable VLLM on Gaudi.

#### Build docker

```bash
bash ./build_docker_vllm.sh hpu
```

Set `hw_mode` to `hpu`.

Note: If you want to enable tensor parallel, please set `setuptools==69.5.1` in Dockerfile.hpu before build docker with following command.

```
sed -i "s/RUN pip install setuptools/RUN pip install setuptools==69.5.1/g" docker/Dockerfile.hpu
```

#### Launch vLLM service on single node

For small model, we can just use single node.

```bash
bash ./launch_vllm_service.sh ${port_number} ${model_name} hpu 1
```

Set `hw_mode` to `hpu` and `parallel_number` to 1.

The `launch_vllm_service.sh` script accepts 7 parameters:

- port_number: The port number assigned to the vLLM CPU endpoint, with the default being 8008.
- model_name: The model name utilized for LLM, with the default set to 'meta-llama/Meta-Llama-3-8B-Instruct'.
- hw_mode: The hardware mode utilized for LLM, with the default set to "cpu", and the optional selection can be "hpu".
- parallel_number: parallel nodes number for 'hpu' mode
- block_size: default set to 128 for better performance on HPU
- max_num_seqs: default set to 256 for better performance on HPU
- max_seq_len_to_capture: default set to 2048 for better performance on HPU

If you want to get more performance tuning tips, can refer to [Performance tuning](https://github.com/HabanaAI/vllm-fork/blob/habana_main/README_GAUDI.md#performance-tips).

#### Launch vLLM service on multiple nodes

For large model such as `meta-llama/Meta-Llama-3-70b`, we need to launch on multiple nodes.

```bash
bash ./launch_vllm_service.sh ${port_number} ${model_name} hpu ${parallel_number}
```

For example, if we run `meta-llama/Meta-Llama-3-70b` with 8 cards, we can use following command.

```bash
bash ./launch_vllm_service.sh 8008 meta-llama/Meta-Llama-3-70b hpu 8
```

### 2.3 vLLM with OpenVINO

vLLM powered by OpenVINO supports all LLM models from [vLLM supported models list](https://github.com/vllm-project/vllm/blob/main/docs/source/models/supported_models.rst) and can perform optimal model serving on all x86-64 CPUs with, at least, AVX2 support. OpenVINO vLLM backend supports the following advanced vLLM features:

- Prefix caching (`--enable-prefix-caching`)
- Chunked prefill (`--enable-chunked-prefill`)

#### Build Docker Image

To build the docker image, run the command

```bash
bash ./build_docker_vllm_openvino.sh
```

Once it successfully builds, you will have the `vllm:openvino` image. It can be used to spawn a serving container with OpenAI API endpoint or you can work with it interactively via bash shell.

#### Launch vLLM service

For gated models, such as `LLAMA-2`, you will have to pass -e HUGGING_FACE_HUB_TOKEN=\<token\> to the docker run command above with a valid Hugging Face Hub read token.

Please follow this link [huggingface token](https://huggingface.co/docs/hub/security-tokens) to get an access token and export `HUGGINGFACEHUB_API_TOKEN` environment with the token.

```bash
export HUGGINGFACEHUB_API_TOKEN=<token>
```

To start the model server:

```bash
bash launch_vllm_service_openvino.sh
```

#### Performance tips

vLLM OpenVINO backend uses the following environment variables to control behavior:

- `VLLM_OPENVINO_KVCACHE_SPACE` to specify the KV Cache size (e.g, `VLLM_OPENVINO_KVCACHE_SPACE=40` means 40 GB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users.

- `VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8` to control KV cache precision. By default, FP16 / BF16 is used depending on platform.

- `VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON` to enable U8 weights compression during model loading stage. By default, compression is turned off.

To enable better TPOT / TTFT latency, you can use vLLM's chunked prefill feature (`--enable-chunked-prefill`). Based on the experiments, the recommended batch size is `256` (`--max-num-batched-tokens`)

OpenVINO best known configuration is:

$ VLLM_OPENVINO_KVCACHE_SPACE=100 VLLM_OPENVINO_CPU_KV_CACHE_PRECISION=u8 VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON \
python3 vllm/benchmarks/benchmark_throughput.py --model meta-llama/Llama-2-7b-chat-hf --dataset vllm/benchmarks/ShareGPT_V3_unfiltered_cleaned_split.json --enable-chunked-prefill --max-num-batched-tokens 256

### 2.4 Query the service

And then you can make requests like below to check the service status:

```bash
curl http://${your_ip}:8008/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"prompt": "What is Deep Learning?",
"max_tokens": 32,
"temperature": 0
}'
```

## 🚀3. Set up LLM microservice

Then we warp the VLLM service into LLM microcervice.

### Build docker

```bash
bash build_docker_microservice.sh
```

### Launch the microservice

```bash
bash launch_microservice.sh
```

### Query the microservice

```bash
curl http://${your_ip}:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_p":0.95,"temperature":0.01,"streaming":false}' \
-H 'Content-Type: application/json'
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

cd ../../../../
docker build \
-t opea/llm-vllm-llamaindex:latest \
--build-arg https_proxy=$https_proxy \
--build-arg http_proxy=$http_proxy \
-f comps/llms/text-generation/vllm/llama_index/Dockerfile .
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

# FROM vault.habana.ai/gaudi-docker/1.16.1/ubuntu22.04/habanalabs/pytorch-installer-2.2.2:latest as hpu
FROM opea/habanalabs:1.16.1-pytorch-installer-2.2.2 as hpu

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/
ENV LANG=en_US.UTF-8
RUN sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config && \
service ssh restart
USER user
WORKDIR /root

RUN pip install --no-cache-dir --upgrade-strategy eager optimum[habana]

RUN pip install --no-cache-dir -v git+https://github.com/HabanaAI/vllm-fork.git@cf6952d

RUN pip install --no-cache-dir setuptools

ENV no_proxy=localhost,127.0.0.1

ENV PT_HPU_LAZY_ACC_PAR_MODE=0

ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true

CMD ["/bin/bash"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
#!/bin/bash

# Copyright (c) 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Set default values
default_hw_mode="cpu"

# Assign arguments to variable
hw_mode=${1:-$default_hw_mode}

# Check if all required arguments are provided
if [ "$#" -lt 0 ] || [ "$#" -gt 1 ]; then
echo "Usage: $0 [hw_mode]"
echo "Please customize the arguments you want to use.
- hw_mode: The hardware mode for the Ray Gaudi endpoint, with the default being 'cpu', and the optional selection can be 'cpu' and 'hpu'."
exit 1
fi

# Build the docker image for vLLM based on the hardware mode
if [ "$hw_mode" = "hpu" ]; then
docker build -f docker/Dockerfile.intel_hpu -t opea/vllm:hpu --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
else
git clone https://github.com/vllm-project/vllm.git
cd ./vllm/
docker build -f Dockerfile.cpu -t opea/vllm:cpu --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
fi
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
#!/bin/bash

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

BASEDIR="$( cd "$( dirname "$0" )" && pwd )"
git clone https://github.com/vllm-project/vllm.git vllm
cd ./vllm/
docker build -t vllm:openvino -f Dockerfile.openvino . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy
cd $BASEDIR && rm -rf vllm
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

# Set default values
default_port=8008
default_model=$LLM_MODEL
default_hw_mode="cpu"
default_parallel_number=1
default_block_size=128
default_max_num_seqs=256
default_max_seq_len_to_capture=2048

# Assign arguments to variables
port_number=${1:-$default_port}
model_name=${2:-$default_model}
hw_mode=${3:-$default_hw_mode}
parallel_number=${4:-$default_parallel_number}
block_size=${5:-$default_block_size}
max_num_seqs=${6:-$default_max_num_seqs}
max_seq_len_to_capture=${7:-$default_max_seq_len_to_capture}

# Check if all required arguments are provided
if [ "$#" -lt 0 ] || [ "$#" -gt 4 ]; then
echo "Usage: $0 [port_number] [model_name] [hw_mode] [parallel_number]"
echo "port_number: The port number assigned to the vLLM CPU endpoint, with the default being 8080."
echo "model_name: The model name utilized for LLM, with the default set to 'meta-llama/Meta-Llama-3-8B-Instruct'."
echo "hw_mode: The hardware mode utilized for LLM, with the default set to 'cpu', and the optional selection can be 'hpu'"
echo "parallel_number: parallel nodes number for 'hpu' mode"
echo "block_size: default set to 128 for better performance on HPU"
echo "max_num_seqs: default set to 256 for better performance on HPU"
echo "max_seq_len_to_capture: default set to 2048 for better performance on HPU"
exit 1
fi

# Set the volume variable
volume=$PWD/data

# Build the Docker run command based on hardware mode
if [ "$hw_mode" = "hpu" ]; then
docker run -d --rm --runtime=habana --name="vllm-service" -p $port_number:80 -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -e HTTPS_PROXY=$https_proxy -e HTTP_PROXY=$https_proxy -e HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} opea/vllm:hpu /bin/bash -c "export VLLM_CPU_KVCACHE_SPACE=40 && python3 -m vllm.entrypoints.openai.api_server --enforce-eager --model $model_name --tensor-parallel-size $parallel_number --host 0.0.0.0 --port 80 --block-size $block_size --max-num-seqs $max_num_seqs --max-seq_len-to-capture $max_seq_len_to_capture "
else
docker run -d --rm --name="vllm-service" -p $port_number:80 --network=host -v $volume:/data -e HTTPS_PROXY=$https_proxy -e HTTP_PROXY=$https_proxy -e HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -e VLLM_CPU_KVCACHE_SPACE=40 opea/vllm:cpu --model $model_name --host 0.0.0.0 --port 80
fi
Loading

0 comments on commit 8e3f553

Please sign in to comment.