-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
base.py
199 lines (169 loc) · 7.74 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import List, Tuple
from mmengine.model import BaseModel
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.structures import SegDataSample
from mmseg.utils import (ForwardResults, OptConfigType, OptMultiConfig,
OptSampleList, SampleList)
from ..utils import resize
class BaseSegmentor(BaseModel, metaclass=ABCMeta):
"""Base class for segmentors.
Args:
data_preprocessor (dict, optional): Model preprocessing config
for processing the input data. it usually includes
``to_rgb``, ``pad_size_divisor``, ``pad_val``,
``mean`` and ``std``. Default to None.
init_cfg (dict, optional): the config to control the
initialization. Default to None.
"""
def __init__(self,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
@property
def with_neck(self) -> bool:
"""bool: whether the segmentor has neck"""
return hasattr(self, 'neck') and self.neck is not None
@property
def with_auxiliary_head(self) -> bool:
"""bool: whether the segmentor has auxiliary head"""
return hasattr(self,
'auxiliary_head') and self.auxiliary_head is not None
@property
def with_decode_head(self) -> bool:
"""bool: whether the segmentor has decode head"""
return hasattr(self, 'decode_head') and self.decode_head is not None
@abstractmethod
def extract_feat(self, inputs: Tensor) -> bool:
"""Placeholder for extract features from images."""
pass
@abstractmethod
def encode_decode(self, inputs: Tensor, batch_data_samples: SampleList):
"""Placeholder for encode images with backbone and decode into a
semantic segmentation map of the same size as input."""
pass
def forward(self,
inputs: Tensor,
data_samples: OptSampleList = None,
mode: str = 'tensor') -> ForwardResults:
"""The unified entry for a forward process in both training and test.
The method should accept three modes: "tensor", "predict" and "loss":
- "tensor": Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- "predict": Forward and return the predictions, which are fully
processed to a list of :obj:`SegDataSample`.
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor): The input tensor with shape (N, C, ...) in
general.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`. Default to None.
mode (str): Return what kind of value. Defaults to 'tensor'.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of :obj:`DetDataSample`.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(inputs, data_samples)
elif mode == 'predict':
return self.predict(inputs, data_samples)
elif mode == 'tensor':
return self._forward(inputs, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode')
@abstractmethod
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples."""
pass
@abstractmethod
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing."""
pass
@abstractmethod
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tuple[List[Tensor]]:
"""Network forward process.
Usually includes backbone, neck and head forward without any post-
processing.
"""
pass
def postprocess_result(self,
seg_logits: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
seg_logits (Tensor): The segmentation results, seg_logits from
model of each input image.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_sem_seg`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Segmentation results of the
input images. Each SegDataSample usually contain:
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic
segmentation before normalization.
"""
batch_size, C, H, W = seg_logits.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_seg_logits shape is 1, C, H, W after remove padding
i_seg_logits = seg_logits[i:i + 1, :,
padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_seg_logits = i_seg_logits.flip(dims=(3, ))
else:
i_seg_logits = i_seg_logits.flip(dims=(2, ))
# resize as original shape
i_seg_logits = resize(
i_seg_logits,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_seg_logits = seg_logits[i]
if C > 1:
i_seg_pred = i_seg_logits.argmax(dim=0, keepdim=True)
else:
i_seg_pred = (i_seg_logits >
self.decode_head.threshold).to(i_seg_logits)
data_samples[i].set_data({
'seg_logits':
PixelData(**{'data': i_seg_logits}),
'pred_sem_seg':
PixelData(**{'data': i_seg_pred})
})
return data_samples