-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
potsdam.py
158 lines (136 loc) · 5.74 KB
/
potsdam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import math
import os
import os.path as osp
import tempfile
import zipfile
import mmcv
import numpy as np
from mmengine.utils import ProgressBar, mkdir_or_exist
def parse_args():
parser = argparse.ArgumentParser(
description='Convert potsdam dataset to mmsegmentation format')
parser.add_argument('dataset_path', help='potsdam folder path')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
parser.add_argument(
'--clip_size',
type=int,
help='clipped size of image after preparation',
default=512)
parser.add_argument(
'--stride_size',
type=int,
help='stride of clipping original images',
default=256)
args = parser.parse_args()
return args
def clip_big_image(image_path, clip_save_dir, args, to_label=False):
# Original image of Potsdam dataset is very large, thus pre-processing
# of them is adopted. Given fixed clip size and stride size to generate
# clipped image, the intersection of width and height is determined.
# For example, given one 5120 x 5120 original image, the clip size is
# 512 and stride size is 256, thus it would generate 20x20 = 400 images
# whose size are all 512x512.
image = mmcv.imread(image_path)
h, w, c = image.shape
clip_size = args.clip_size
stride_size = args.stride_size
num_rows = math.ceil((h - clip_size) / stride_size) if math.ceil(
(h - clip_size) /
stride_size) * stride_size + clip_size >= h else math.ceil(
(h - clip_size) / stride_size) + 1
num_cols = math.ceil((w - clip_size) / stride_size) if math.ceil(
(w - clip_size) /
stride_size) * stride_size + clip_size >= w else math.ceil(
(w - clip_size) / stride_size) + 1
x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1))
xmin = x * clip_size
ymin = y * clip_size
xmin = xmin.ravel()
ymin = ymin.ravel()
xmin_offset = np.where(xmin + clip_size > w, w - xmin - clip_size,
np.zeros_like(xmin))
ymin_offset = np.where(ymin + clip_size > h, h - ymin - clip_size,
np.zeros_like(ymin))
boxes = np.stack([
xmin + xmin_offset, ymin + ymin_offset,
np.minimum(xmin + clip_size, w),
np.minimum(ymin + clip_size, h)
],
axis=1)
if to_label:
color_map = np.array([[0, 0, 0], [255, 255, 255], [255, 0, 0],
[255, 255, 0], [0, 255, 0], [0, 255, 255],
[0, 0, 255]])
flatten_v = np.matmul(
image.reshape(-1, c),
np.array([2, 3, 4]).reshape(3, 1))
out = np.zeros_like(flatten_v)
for idx, class_color in enumerate(color_map):
value_idx = np.matmul(class_color,
np.array([2, 3, 4]).reshape(3, 1))
out[flatten_v == value_idx] = idx
image = out.reshape(h, w)
for box in boxes:
start_x, start_y, end_x, end_y = box
clipped_image = image[start_y:end_y,
start_x:end_x] if to_label else image[
start_y:end_y, start_x:end_x, :]
idx_i, idx_j = osp.basename(image_path).split('_')[2:4]
mmcv.imwrite(
clipped_image.astype(np.uint8),
osp.join(
clip_save_dir,
f'{idx_i}_{idx_j}_{start_x}_{start_y}_{end_x}_{end_y}.png'))
def main():
args = parse_args()
splits = {
'train': [
'2_10', '2_11', '2_12', '3_10', '3_11', '3_12', '4_10', '4_11',
'4_12', '5_10', '5_11', '5_12', '6_10', '6_11', '6_12', '6_7',
'6_8', '6_9', '7_10', '7_11', '7_12', '7_7', '7_8', '7_9'
],
'val': [
'5_15', '6_15', '6_13', '3_13', '4_14', '6_14', '5_14', '2_13',
'4_15', '2_14', '5_13', '4_13', '3_14', '7_13'
]
}
dataset_path = args.dataset_path
if args.out_dir is None:
out_dir = osp.join('data', 'potsdam')
else:
out_dir = args.out_dir
print('Making directories...')
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train'))
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val'))
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train'))
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val'))
zipp_list = glob.glob(os.path.join(dataset_path, '*.zip'))
print('Find the data', zipp_list)
for zipp in zipp_list:
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
zip_file = zipfile.ZipFile(zipp)
zip_file.extractall(tmp_dir)
src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif'))
if not len(src_path_list):
sub_tmp_dir = os.path.join(tmp_dir, os.listdir(tmp_dir)[0])
src_path_list = glob.glob(os.path.join(sub_tmp_dir, '*.tif'))
prog_bar = ProgressBar(len(src_path_list))
for i, src_path in enumerate(src_path_list):
idx_i, idx_j = osp.basename(src_path).split('_')[2:4]
data_type = 'train' if f'{idx_i}_{idx_j}' in splits[
'train'] else 'val'
if 'label' in src_path:
dst_dir = osp.join(out_dir, 'ann_dir', data_type)
clip_big_image(src_path, dst_dir, args, to_label=True)
else:
dst_dir = osp.join(out_dir, 'img_dir', data_type)
clip_big_image(src_path, dst_dir, args, to_label=False)
prog_bar.update()
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()