-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
nl_head.py
50 lines (43 loc) · 1.57 KB
/
nl_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import NonLocal2d
from ..builder import HEADS
from .fcn_head import FCNHead
@HEADS.register_module()
class NLHead(FCNHead):
"""Non-local Neural Networks.
This head is the implementation of `NLNet
<https://arxiv.org/abs/1711.07971>`_.
Args:
reduction (int): Reduction factor of projection transform. Default: 2.
use_scale (bool): Whether to scale pairwise_weight by
sqrt(1/inter_channels). Default: True.
mode (str): The nonlocal mode. Options are 'embedded_gaussian',
'dot_product'. Default: 'embedded_gaussian.'.
"""
def __init__(self,
reduction=2,
use_scale=True,
mode='embedded_gaussian',
**kwargs):
super(NLHead, self).__init__(num_convs=2, **kwargs)
self.reduction = reduction
self.use_scale = use_scale
self.mode = mode
self.nl_block = NonLocal2d(
in_channels=self.channels,
reduction=self.reduction,
use_scale=self.use_scale,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
mode=self.mode)
def forward(self, inputs):
"""Forward function."""
x = self._transform_inputs(inputs)
output = self.convs[0](x)
output = self.nl_block(output)
output = self.convs[1](output)
if self.concat_input:
output = self.conv_cat(torch.cat([x, output], dim=1))
output = self.cls_seg(output)
return output