-
Notifications
You must be signed in to change notification settings - Fork 8.6k
/
car_racing.py
828 lines (721 loc) · 28.3 KB
/
car_racing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
__credits__ = ["Andrea PIERRÉ"]
import math
from typing import Optional, Union
import numpy as np
import gym
from gym import spaces
from gym.envs.box2d.car_dynamics import Car
from gym.error import DependencyNotInstalled, InvalidAction
from gym.utils import EzPickle
try:
import Box2D
from Box2D.b2 import contactListener, fixtureDef, polygonShape
except ImportError:
raise DependencyNotInstalled("box2D is not installed, run `pip install gym[box2d]`")
try:
# As pygame is necessary for using the environment (reset and step) even without a render mode
# therefore, pygame is a necessary import for the environment.
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[box2d]`"
)
STATE_W = 96 # less than Atari 160x192
STATE_H = 96
VIDEO_W = 600
VIDEO_H = 400
WINDOW_W = 1000
WINDOW_H = 800
SCALE = 6.0 # Track scale
TRACK_RAD = 900 / SCALE # Track is heavily morphed circle with this radius
PLAYFIELD = 2000 / SCALE # Game over boundary
FPS = 50 # Frames per second
ZOOM = 2.7 # Camera zoom
ZOOM_FOLLOW = True # Set to False for fixed view (don't use zoom)
TRACK_DETAIL_STEP = 21 / SCALE
TRACK_TURN_RATE = 0.31
TRACK_WIDTH = 40 / SCALE
BORDER = 8 / SCALE
BORDER_MIN_COUNT = 4
GRASS_DIM = PLAYFIELD / 20.0
MAX_SHAPE_DIM = (
max(GRASS_DIM, TRACK_WIDTH, TRACK_DETAIL_STEP) * math.sqrt(2) * ZOOM * SCALE
)
class FrictionDetector(contactListener):
def __init__(self, env, lap_complete_percent):
contactListener.__init__(self)
self.env = env
self.lap_complete_percent = lap_complete_percent
def BeginContact(self, contact):
self._contact(contact, True)
def EndContact(self, contact):
self._contact(contact, False)
def _contact(self, contact, begin):
tile = None
obj = None
u1 = contact.fixtureA.body.userData
u2 = contact.fixtureB.body.userData
if u1 and "road_friction" in u1.__dict__:
tile = u1
obj = u2
if u2 and "road_friction" in u2.__dict__:
tile = u2
obj = u1
if not tile:
return
# inherit tile color from env
tile.color[:] = self.env.road_color
if not obj or "tiles" not in obj.__dict__:
return
if begin:
obj.tiles.add(tile)
if not tile.road_visited:
tile.road_visited = True
self.env.reward += 1000.0 / len(self.env.track)
self.env.tile_visited_count += 1
# Lap is considered completed if enough % of the track was covered
if (
tile.idx == 0
and self.env.tile_visited_count / len(self.env.track)
> self.lap_complete_percent
):
self.env.new_lap = True
else:
obj.tiles.remove(tile)
class CarRacing(gym.Env, EzPickle):
"""
### Description
The easiest control task to learn from pixels - a top-down
racing environment. The generated track is random every episode.
Some indicators are shown at the bottom of the window along with the
state RGB buffer. From left to right: true speed, four ABS sensors,
steering wheel position, and gyroscope.
To play yourself (it's rather fast for humans), type:
```
python gym/envs/box2d/car_racing.py
```
Remember: it's a powerful rear-wheel drive car - don't press the accelerator
and turn at the same time.
### Action Space
If continuous:
There are 3 actions: steering (-1 is full left, +1 is full right), gas, and breaking.
If discrete:
There are 5 actions: do nothing, steer left, steer right, gas, brake.
### Observation Space
State consists of 96x96 pixels.
### Rewards
The reward is -0.1 every frame and +1000/N for every track tile visited,
where N is the total number of tiles visited in the track. For example,
if you have finished in 732 frames, your reward is
1000 - 0.1*732 = 926.8 points.
### Starting State
The car starts at rest in the center of the road.
### Episode Termination
The episode finishes when all of the tiles are visited. The car can also go
outside of the playfield - that is, far off the track, in which case it will
receive -100 reward and die.
### Arguments
`lap_complete_percent` dictates the percentage of tiles that must be visited by
the agent before a lap is considered complete.
Passing `domain_randomize=True` enables the domain randomized variant of the environment.
In this scenario, the background and track colours are different on every reset.
Passing `continuous=False` converts the environment to use discrete action space.
The discrete action space has 5 actions: [do nothing, left, right, gas, brake].
### Reset Arguments
Passing the option `options["randomize"] = True` will change the current colour of the environment on demand.
Correspondingly, passing the option `options["randomize"] = False` will not change the current colour of the environment.
`domain_randomize` must be `True` on init for this argument to work.
Example usage:
```py
env = gym.make("CarRacing-v1", domain_randomize=True)
# normal reset, this changes the colour scheme by default
env.reset()
# reset with colour scheme change
env.reset(options={"randomize": True})
# reset with no colour scheme change
env.reset(options={"randomize": False})
```
### Version History
- v1: Change track completion logic and add domain randomization (0.24.0)
- v0: Original version
### References
- Chris Campbell (2014), http://www.iforce2d.net/b2dtut/top-down-car.
### Credits
Created by Oleg Klimov
"""
metadata = {
"render_modes": [
"human",
"rgb_array",
"state_pixels",
],
"render_fps": FPS,
}
def __init__(
self,
render_mode: Optional[str] = None,
verbose: bool = False,
lap_complete_percent: float = 0.95,
domain_randomize: bool = False,
continuous: bool = True,
):
EzPickle.__init__(
self,
render_mode,
verbose,
lap_complete_percent,
domain_randomize,
continuous,
)
self.continuous = continuous
self.domain_randomize = domain_randomize
self.lap_complete_percent = lap_complete_percent
self._init_colors()
self.contactListener_keepref = FrictionDetector(self, self.lap_complete_percent)
self.world = Box2D.b2World((0, 0), contactListener=self.contactListener_keepref)
self.screen: Optional[pygame.Surface] = None
self.surf = None
self.clock = None
self.isopen = True
self.invisible_state_window = None
self.invisible_video_window = None
self.road = None
self.car: Optional[Car] = None
self.reward = 0.0
self.prev_reward = 0.0
self.verbose = verbose
self.new_lap = False
self.fd_tile = fixtureDef(
shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)])
)
# This will throw a warning in tests/envs/test_envs in utils/env_checker.py as the space is not symmetric
# or normalised however this is not possible here so ignore
if self.continuous:
self.action_space = spaces.Box(
np.array([-1, 0, 0]).astype(np.float32),
np.array([+1, +1, +1]).astype(np.float32),
) # steer, gas, brake
else:
self.action_space = spaces.Discrete(5)
# do nothing, left, right, gas, brake
self.observation_space = spaces.Box(
low=0, high=255, shape=(STATE_H, STATE_W, 3), dtype=np.uint8
)
self.render_mode = render_mode
def _destroy(self):
if not self.road:
return
for t in self.road:
self.world.DestroyBody(t)
self.road = []
assert self.car is not None
self.car.destroy()
def _init_colors(self):
if self.domain_randomize:
# domain randomize the bg and grass colour
self.road_color = self.np_random.uniform(0, 210, size=3)
self.bg_color = self.np_random.uniform(0, 210, size=3)
self.grass_color = np.copy(self.bg_color)
idx = self.np_random.integers(3)
self.grass_color[idx] += 20
else:
# default colours
self.road_color = np.array([102, 102, 102])
self.bg_color = np.array([102, 204, 102])
self.grass_color = np.array([102, 230, 102])
def _reinit_colors(self, randomize):
assert (
self.domain_randomize
), "domain_randomize must be True to use this function."
if randomize:
# domain randomize the bg and grass colour
self.road_color = self.np_random.uniform(0, 210, size=3)
self.bg_color = self.np_random.uniform(0, 210, size=3)
self.grass_color = np.copy(self.bg_color)
idx = self.np_random.integers(3)
self.grass_color[idx] += 20
def _create_track(self):
CHECKPOINTS = 12
# Create checkpoints
checkpoints = []
for c in range(CHECKPOINTS):
noise = self.np_random.uniform(0, 2 * math.pi * 1 / CHECKPOINTS)
alpha = 2 * math.pi * c / CHECKPOINTS + noise
rad = self.np_random.uniform(TRACK_RAD / 3, TRACK_RAD)
if c == 0:
alpha = 0
rad = 1.5 * TRACK_RAD
if c == CHECKPOINTS - 1:
alpha = 2 * math.pi * c / CHECKPOINTS
self.start_alpha = 2 * math.pi * (-0.5) / CHECKPOINTS
rad = 1.5 * TRACK_RAD
checkpoints.append((alpha, rad * math.cos(alpha), rad * math.sin(alpha)))
self.road = []
# Go from one checkpoint to another to create track
x, y, beta = 1.5 * TRACK_RAD, 0, 0
dest_i = 0
laps = 0
track = []
no_freeze = 2500
visited_other_side = False
while True:
alpha = math.atan2(y, x)
if visited_other_side and alpha > 0:
laps += 1
visited_other_side = False
if alpha < 0:
visited_other_side = True
alpha += 2 * math.pi
while True: # Find destination from checkpoints
failed = True
while True:
dest_alpha, dest_x, dest_y = checkpoints[dest_i % len(checkpoints)]
if alpha <= dest_alpha:
failed = False
break
dest_i += 1
if dest_i % len(checkpoints) == 0:
break
if not failed:
break
alpha -= 2 * math.pi
continue
r1x = math.cos(beta)
r1y = math.sin(beta)
p1x = -r1y
p1y = r1x
dest_dx = dest_x - x # vector towards destination
dest_dy = dest_y - y
# destination vector projected on rad:
proj = r1x * dest_dx + r1y * dest_dy
while beta - alpha > 1.5 * math.pi:
beta -= 2 * math.pi
while beta - alpha < -1.5 * math.pi:
beta += 2 * math.pi
prev_beta = beta
proj *= SCALE
if proj > 0.3:
beta -= min(TRACK_TURN_RATE, abs(0.001 * proj))
if proj < -0.3:
beta += min(TRACK_TURN_RATE, abs(0.001 * proj))
x += p1x * TRACK_DETAIL_STEP
y += p1y * TRACK_DETAIL_STEP
track.append((alpha, prev_beta * 0.5 + beta * 0.5, x, y))
if laps > 4:
break
no_freeze -= 1
if no_freeze == 0:
break
# Find closed loop range i1..i2, first loop should be ignored, second is OK
i1, i2 = -1, -1
i = len(track)
while True:
i -= 1
if i == 0:
return False # Failed
pass_through_start = (
track[i][0] > self.start_alpha and track[i - 1][0] <= self.start_alpha
)
if pass_through_start and i2 == -1:
i2 = i
elif pass_through_start and i1 == -1:
i1 = i
break
if self.verbose:
print("Track generation: %i..%i -> %i-tiles track" % (i1, i2, i2 - i1))
assert i1 != -1
assert i2 != -1
track = track[i1 : i2 - 1]
first_beta = track[0][1]
first_perp_x = math.cos(first_beta)
first_perp_y = math.sin(first_beta)
# Length of perpendicular jump to put together head and tail
well_glued_together = np.sqrt(
np.square(first_perp_x * (track[0][2] - track[-1][2]))
+ np.square(first_perp_y * (track[0][3] - track[-1][3]))
)
if well_glued_together > TRACK_DETAIL_STEP:
return False
# Red-white border on hard turns
border = [False] * len(track)
for i in range(len(track)):
good = True
oneside = 0
for neg in range(BORDER_MIN_COUNT):
beta1 = track[i - neg - 0][1]
beta2 = track[i - neg - 1][1]
good &= abs(beta1 - beta2) > TRACK_TURN_RATE * 0.2
oneside += np.sign(beta1 - beta2)
good &= abs(oneside) == BORDER_MIN_COUNT
border[i] = good
for i in range(len(track)):
for neg in range(BORDER_MIN_COUNT):
border[i - neg] |= border[i]
# Create tiles
for i in range(len(track)):
alpha1, beta1, x1, y1 = track[i]
alpha2, beta2, x2, y2 = track[i - 1]
road1_l = (
x1 - TRACK_WIDTH * math.cos(beta1),
y1 - TRACK_WIDTH * math.sin(beta1),
)
road1_r = (
x1 + TRACK_WIDTH * math.cos(beta1),
y1 + TRACK_WIDTH * math.sin(beta1),
)
road2_l = (
x2 - TRACK_WIDTH * math.cos(beta2),
y2 - TRACK_WIDTH * math.sin(beta2),
)
road2_r = (
x2 + TRACK_WIDTH * math.cos(beta2),
y2 + TRACK_WIDTH * math.sin(beta2),
)
vertices = [road1_l, road1_r, road2_r, road2_l]
self.fd_tile.shape.vertices = vertices
t = self.world.CreateStaticBody(fixtures=self.fd_tile)
t.userData = t
c = 0.01 * (i % 3) * 255
t.color = self.road_color + c
t.road_visited = False
t.road_friction = 1.0
t.idx = i
t.fixtures[0].sensor = True
self.road_poly.append(([road1_l, road1_r, road2_r, road2_l], t.color))
self.road.append(t)
if border[i]:
side = np.sign(beta2 - beta1)
b1_l = (
x1 + side * TRACK_WIDTH * math.cos(beta1),
y1 + side * TRACK_WIDTH * math.sin(beta1),
)
b1_r = (
x1 + side * (TRACK_WIDTH + BORDER) * math.cos(beta1),
y1 + side * (TRACK_WIDTH + BORDER) * math.sin(beta1),
)
b2_l = (
x2 + side * TRACK_WIDTH * math.cos(beta2),
y2 + side * TRACK_WIDTH * math.sin(beta2),
)
b2_r = (
x2 + side * (TRACK_WIDTH + BORDER) * math.cos(beta2),
y2 + side * (TRACK_WIDTH + BORDER) * math.sin(beta2),
)
self.road_poly.append(
(
[b1_l, b1_r, b2_r, b2_l],
(255, 255, 255) if i % 2 == 0 else (255, 0, 0),
)
)
self.track = track
return True
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self._destroy()
self.world.contactListener_bug_workaround = FrictionDetector(
self, self.lap_complete_percent
)
self.world.contactListener = self.world.contactListener_bug_workaround
self.reward = 0.0
self.prev_reward = 0.0
self.tile_visited_count = 0
self.t = 0.0
self.new_lap = False
self.road_poly = []
if self.domain_randomize:
randomize = True
if isinstance(options, dict):
if "randomize" in options:
randomize = options["randomize"]
self._reinit_colors(randomize)
while True:
success = self._create_track()
if success:
break
if self.verbose:
print(
"retry to generate track (normal if there are not many"
"instances of this message)"
)
self.car = Car(self.world, *self.track[0][1:4])
if self.render_mode == "human":
self.render()
return self.step(None)[0], {}
def step(self, action: Union[np.ndarray, int]):
assert self.car is not None
if action is not None:
if self.continuous:
self.car.steer(-action[0])
self.car.gas(action[1])
self.car.brake(action[2])
else:
if not self.action_space.contains(action):
raise InvalidAction(
f"you passed the invalid action `{action}`. "
f"The supported action_space is `{self.action_space}`"
)
self.car.steer(-0.6 * (action == 1) + 0.6 * (action == 2))
self.car.gas(0.2 * (action == 3))
self.car.brake(0.8 * (action == 4))
self.car.step(1.0 / FPS)
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
self.t += 1.0 / FPS
self.state = self._render("state_pixels")
step_reward = 0
terminated = False
truncated = False
if action is not None: # First step without action, called from reset()
self.reward -= 0.1
# We actually don't want to count fuel spent, we want car to be faster.
# self.reward -= 10 * self.car.fuel_spent / ENGINE_POWER
self.car.fuel_spent = 0.0
step_reward = self.reward - self.prev_reward
self.prev_reward = self.reward
if self.tile_visited_count == len(self.track) or self.new_lap:
# Truncation due to finishing lap
# This should not be treated as a failure
# but like a timeout
truncated = True
x, y = self.car.hull.position
if abs(x) > PLAYFIELD or abs(y) > PLAYFIELD:
terminated = True
step_reward = -100
if self.render_mode == "human":
self.render()
return self.state, step_reward, terminated, truncated, {}
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
else:
return self._render(self.render_mode)
def _render(self, mode: str):
assert mode in self.metadata["render_modes"]
pygame.font.init()
if self.screen is None and mode == "human":
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((WINDOW_W, WINDOW_H))
if self.clock is None:
self.clock = pygame.time.Clock()
if "t" not in self.__dict__:
return # reset() not called yet
self.surf = pygame.Surface((WINDOW_W, WINDOW_H))
assert self.car is not None
# computing transformations
angle = -self.car.hull.angle
# Animating first second zoom.
zoom = 0.1 * SCALE * max(1 - self.t, 0) + ZOOM * SCALE * min(self.t, 1)
scroll_x = -(self.car.hull.position[0]) * zoom
scroll_y = -(self.car.hull.position[1]) * zoom
trans = pygame.math.Vector2((scroll_x, scroll_y)).rotate_rad(angle)
trans = (WINDOW_W / 2 + trans[0], WINDOW_H / 4 + trans[1])
self._render_road(zoom, trans, angle)
self.car.draw(
self.surf,
zoom,
trans,
angle,
mode not in ["state_pixels_list", "state_pixels"],
)
self.surf = pygame.transform.flip(self.surf, False, True)
# showing stats
self._render_indicators(WINDOW_W, WINDOW_H)
font = pygame.font.Font(pygame.font.get_default_font(), 42)
text = font.render("%04i" % self.reward, True, (255, 255, 255), (0, 0, 0))
text_rect = text.get_rect()
text_rect.center = (60, WINDOW_H - WINDOW_H * 2.5 / 40.0)
self.surf.blit(text, text_rect)
if mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
assert self.screen is not None
self.screen.fill(0)
self.screen.blit(self.surf, (0, 0))
pygame.display.flip()
if mode == "rgb_array":
return self._create_image_array(self.surf, (VIDEO_W, VIDEO_H))
elif mode == "state_pixels":
return self._create_image_array(self.surf, (STATE_W, STATE_H))
else:
return self.isopen
def _render_road(self, zoom, translation, angle):
bounds = PLAYFIELD
field = [
(bounds, bounds),
(bounds, -bounds),
(-bounds, -bounds),
(-bounds, bounds),
]
# draw background
self._draw_colored_polygon(
self.surf, field, self.bg_color, zoom, translation, angle, clip=False
)
# draw grass patches
grass = []
for x in range(-20, 20, 2):
for y in range(-20, 20, 2):
grass.append(
[
(GRASS_DIM * x + GRASS_DIM, GRASS_DIM * y + 0),
(GRASS_DIM * x + 0, GRASS_DIM * y + 0),
(GRASS_DIM * x + 0, GRASS_DIM * y + GRASS_DIM),
(GRASS_DIM * x + GRASS_DIM, GRASS_DIM * y + GRASS_DIM),
]
)
for poly in grass:
self._draw_colored_polygon(
self.surf, poly, self.grass_color, zoom, translation, angle
)
# draw road
for poly, color in self.road_poly:
# converting to pixel coordinates
poly = [(p[0], p[1]) for p in poly]
color = [int(c) for c in color]
self._draw_colored_polygon(self.surf, poly, color, zoom, translation, angle)
def _render_indicators(self, W, H):
s = W / 40.0
h = H / 40.0
color = (0, 0, 0)
polygon = [(W, H), (W, H - 5 * h), (0, H - 5 * h), (0, H)]
pygame.draw.polygon(self.surf, color=color, points=polygon)
def vertical_ind(place, val):
return [
(place * s, H - (h + h * val)),
((place + 1) * s, H - (h + h * val)),
((place + 1) * s, H - h),
((place + 0) * s, H - h),
]
def horiz_ind(place, val):
return [
((place + 0) * s, H - 4 * h),
((place + val) * s, H - 4 * h),
((place + val) * s, H - 2 * h),
((place + 0) * s, H - 2 * h),
]
assert self.car is not None
true_speed = np.sqrt(
np.square(self.car.hull.linearVelocity[0])
+ np.square(self.car.hull.linearVelocity[1])
)
# simple wrapper to render if the indicator value is above a threshold
def render_if_min(value, points, color):
if abs(value) > 1e-4:
pygame.draw.polygon(self.surf, points=points, color=color)
render_if_min(true_speed, vertical_ind(5, 0.02 * true_speed), (255, 255, 255))
# ABS sensors
render_if_min(
self.car.wheels[0].omega,
vertical_ind(7, 0.01 * self.car.wheels[0].omega),
(0, 0, 255),
)
render_if_min(
self.car.wheels[1].omega,
vertical_ind(8, 0.01 * self.car.wheels[1].omega),
(0, 0, 255),
)
render_if_min(
self.car.wheels[2].omega,
vertical_ind(9, 0.01 * self.car.wheels[2].omega),
(51, 0, 255),
)
render_if_min(
self.car.wheels[3].omega,
vertical_ind(10, 0.01 * self.car.wheels[3].omega),
(51, 0, 255),
)
render_if_min(
self.car.wheels[0].joint.angle,
horiz_ind(20, -10.0 * self.car.wheels[0].joint.angle),
(0, 255, 0),
)
render_if_min(
self.car.hull.angularVelocity,
horiz_ind(30, -0.8 * self.car.hull.angularVelocity),
(255, 0, 0),
)
def _draw_colored_polygon(
self, surface, poly, color, zoom, translation, angle, clip=True
):
poly = [pygame.math.Vector2(c).rotate_rad(angle) for c in poly]
poly = [
(c[0] * zoom + translation[0], c[1] * zoom + translation[1]) for c in poly
]
# This checks if the polygon is out of bounds of the screen, and we skip drawing if so.
# Instead of calculating exactly if the polygon and screen overlap,
# we simply check if the polygon is in a larger bounding box whose dimension
# is greater than the screen by MAX_SHAPE_DIM, which is the maximum
# diagonal length of an environment object
if not clip or any(
(-MAX_SHAPE_DIM <= coord[0] <= WINDOW_W + MAX_SHAPE_DIM)
and (-MAX_SHAPE_DIM <= coord[1] <= WINDOW_H + MAX_SHAPE_DIM)
for coord in poly
):
gfxdraw.aapolygon(self.surf, poly, color)
gfxdraw.filled_polygon(self.surf, poly, color)
def _create_image_array(self, screen, size):
scaled_screen = pygame.transform.smoothscale(screen, size)
return np.transpose(
np.array(pygame.surfarray.pixels3d(scaled_screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
pygame.display.quit()
self.isopen = False
pygame.quit()
if __name__ == "__main__":
a = np.array([0.0, 0.0, 0.0])
def register_input():
global quit, restart
for event in pygame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
a[0] = -1.0
if event.key == pygame.K_RIGHT:
a[0] = +1.0
if event.key == pygame.K_UP:
a[1] = +1.0
if event.key == pygame.K_DOWN:
a[2] = +0.8 # set 1.0 for wheels to block to zero rotation
if event.key == pygame.K_RETURN:
restart = True
if event.key == pygame.K_ESCAPE:
quit = True
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT:
a[0] = 0
if event.key == pygame.K_RIGHT:
a[0] = 0
if event.key == pygame.K_UP:
a[1] = 0
if event.key == pygame.K_DOWN:
a[2] = 0
if event.type == pygame.QUIT:
quit = True
env = CarRacing(render_mode="human")
quit = False
while not quit:
env.reset()
total_reward = 0.0
steps = 0
restart = False
while True:
register_input()
s, r, terminated, truncated, info = env.step(a)
total_reward += r
if steps % 200 == 0 or terminated or truncated:
print("\naction " + str([f"{x:+0.2f}" for x in a]))
print(f"step {steps} total_reward {total_reward:+0.2f}")
steps += 1
if terminated or truncated or restart or quit:
break
env.close()