-
Notifications
You must be signed in to change notification settings - Fork 371
/
acer.py
485 lines (456 loc) · 23.8 KB
/
acer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from collections import namedtuple
from typing import List, Dict, Any, Tuple
import copy
import torch
from ding.model import model_wrap
from ding.rl_utils import get_train_sample, compute_q_retraces, acer_policy_error,\
acer_value_error, acer_trust_region_update
from ding.torch_utils import Adam, RMSprop, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from ding.policy.base_policy import Policy
EPS = 1e-8
@POLICY_REGISTRY.register('acer')
class ACERPolicy(Policy):
r"""
Overview:
Policy class of ACER algorithm.
Config:
== ======================= ======== ============== ===================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ======================= ======== ============== ===================================== =======================
1 ``type`` str acer | RL policy register name, refer to | this arg is optional,
| registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff-
| | erent from modes
3 ``on_policy`` bool False | Whether the RL algorithm is
| on-policy or off-policy
4 ``trust_region`` bool True | Whether the RL algorithm use trust |
| region constraint |
5 ``trust_region_value`` float 1.0 | maximum range of the trust region |
6 ``unroll_len`` int 32 | trajectory length to calculate
| Q retrace target
7 ``learn.update`` int 4 | How many updates(iterations) to | this args can be vary
``per_collect`` | train after collector's one | from envs. Bigger val
| collection. Only |
| valid in serial training | means more off-policy
8 ``c_clip_ratio`` float 1.0 | clip ratio of importance weights |
== ======================= ======== ============== ===================================== =======================
"""
unroll_len = 32
config = dict(
type='acer',
cuda=False,
# (bool) whether to use on-policy training pipeline (behaviour policy and training policy are the same)
# here we follow ppo serial pipeline, the original is False
on_policy=False,
priority=False,
# (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
learn=dict(
# (str) the type of gradient clip method
grad_clip_type=None,
# (float) max value when ACER use gradient clip
clip_value=None,
# (int) collect n_sample data, train model update_per_collect times
# here we follow ppo serial pipeline
update_per_collect=4,
# (int) the number of data for a train iteration
batch_size=16,
# (float) loss weight of the value network, the weight of policy network is set to 1
value_weight=0.5,
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1
entropy_weight=0.0001,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.9,
# (float) additional discounting parameter
lambda_=0.95,
# (int) the trajectory length to calculate v-trace target
unroll_len=unroll_len,
# (float) clip ratio of importance weights
c_clip_ratio=10,
trust_region=True,
trust_region_value=1.0,
learning_rate_actor=0.0005,
learning_rate_critic=0.0005,
target_theta=0.01
),
collect=dict(
# (int) collect n_sample data, train model n_iteration times
# n_sample=16,
# (int) the trajectory length to calculate v-trace target
unroll_len=unroll_len,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.9,
gae_lambda=0.95,
collector=dict(
type='sample',
collect_print_freq=1000,
),
),
eval=dict(evaluator=dict(eval_freq=200, ), ),
other=dict(replay_buffer=dict(
replay_buffer_size=1000,
max_use=16,
), ),
)
def default_model(self) -> Tuple[str, List[str]]:
return 'acer', ['ding.model.template.acer']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Initialize the optimizer, algorithm config and main model.
"""
# Optimizer
self._optimizer_actor = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_actor,
grad_clip_type=self._cfg.learn.grad_clip_type,
clip_value=self._cfg.learn.clip_value
)
self._optimizer_critic = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_critic,
)
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._action_shape = self._cfg.model.action_shape
self._unroll_len = self._cfg.learn.unroll_len
# Algorithm config
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._value_weight = self._cfg.learn.value_weight
self._entropy_weight = self._cfg.learn.entropy_weight
self._gamma = self._cfg.learn.discount_factor
# self._rho_clip_ratio = self._cfg.learn.rho_clip_ratio
self._c_clip_ratio = self._cfg.learn.c_clip_ratio
# self._rho_pg_clip_ratio = self._cfg.learn.rho_pg_clip_ratio
self._use_trust_region = self._cfg.learn.trust_region
self._trust_region_value = self._cfg.learn.trust_region_value
# Main model
self._learn_model.reset()
self._target_model.reset()
def _data_preprocess_learn(self, data: List[Dict[str, Any]]):
"""
Overview:
Data preprocess function of learn mode.
Convert list trajectory data to to trajectory data, which is a dict of tensors.
Arguments:
- data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \
dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\
'next_obs', 'logit', 'action', 'reward', 'done'
Returns:
- data (:obj:`dict`): Dict type data. Values are torch.Tensor or np.ndarray or dict/list combinations. \
ReturnsKeys:
- necessary: 'logit', 'action', 'reward', 'done', 'weight', 'obs_plus_1'.
- optional and not used in later computation: 'obs', 'next_obs'.'IS', 'collect_iter', 'replay_unique_id', \
'replay_buffer_idx', 'priority', 'staleness', 'use'.
ReturnsShapes:
- obs_plus_1 (:obj:`torch.FloatTensor`): :math:`(T * B, obs_shape)`, where T is timestep, B is batch size \
and obs_shape is the shape of single env observation
- logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim
- action (:obj:`torch.LongTensor`): :math:`(T, B)`
- reward (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- done (:obj:`torch.FloatTensor`): :math:`(T, B)`
- weight (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
data = default_collate(data)
if self._cuda:
data = to_device(data, self._device)
data['weight'] = data.get('weight', None)
# shape (T+1)*B,env_obs_shape
data['obs_plus_1'] = torch.cat((data['obs'] + data['next_obs'][-1:]), dim=0)
data['logit'] = torch.cat(
data['logit'], dim=0
).reshape(self._unroll_len, -1, self._action_shape) # shape T,B,env_action_shape
data['action'] = torch.cat(data['action'], dim=0).reshape(self._unroll_len, -1) # shape T,B,
data['done'] = torch.cat(data['done'], dim=0).reshape(self._unroll_len, -1).float() # shape T,B,
data['reward'] = torch.cat(data['reward'], dim=0).reshape(self._unroll_len, -1) # shape T,B,
data['weight'] = torch.cat(
data['weight'], dim=0
).reshape(self._unroll_len, -1) if data['weight'] else None # shape T,B
return data
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
r"""
Overview:
Forward computation graph of learn mode(updating policy).
Arguments:
- data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \
dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least 'obs',\
'next_obs', 'logit', 'action', 'reward', 'done'
Returns:
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \
recorded in text log and tensorboard, values are python scalar or a list of scalars.
ArgumentsKeys:
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done``
- optional: 'collect_iter', 'replay_unique_id', 'replay_buffer_idx', 'priority', 'staleness', 'use', 'IS'
ReturnsKeys:
- necessary: ``cur_lr_actor``, ``cur_lr_critic``, ``actor_loss`,``bc_loss``,``policy_loss``,\
``critic_loss``,``entropy_loss``
"""
data = self._data_preprocess_learn(data)
self._learn_model.train()
action_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_actor')
q_value_data = self._learn_model.forward(data['obs_plus_1'], mode='compute_critic')
avg_action_data = self._target_model.forward(data['obs_plus_1'], mode='compute_actor')
target_logit, behaviour_logit, avg_logit, actions, q_values, rewards, weights = self._reshape_data(
action_data, avg_action_data, q_value_data, data
)
# shape (T+1),B,env_action_shape
target_logit = torch.log_softmax(target_logit, dim=-1)
# shape T,B,env_action_shape
behaviour_logit = torch.log_softmax(behaviour_logit, dim=-1)
# shape (T+1),B,env_action_shape
avg_logit = torch.log_softmax(avg_logit, dim=-1)
with torch.no_grad():
# shape T,B,env_action_shape
ratio = torch.exp(target_logit[0:-1] - behaviour_logit)
# shape (T+1),B,1
v_pred = (q_values * torch.exp(target_logit)).sum(-1).unsqueeze(-1)
# Calculate retrace
q_retraces = compute_q_retraces(q_values, v_pred, rewards, actions, weights, ratio, self._gamma)
# the terminal states' weights are 0. it needs to be shift to count valid state
weights_ext = torch.ones_like(weights)
weights_ext[1:] = weights[0:-1]
weights = weights_ext
q_retraces = q_retraces[0:-1] # shape T,B,1
q_values = q_values[0:-1] # shape T,B,env_action_shape
v_pred = v_pred[0:-1] # shape T,B,1
target_logit = target_logit[0:-1] # shape T,B,env_action_shape
avg_logit = avg_logit[0:-1] # shape T,B,env_action_shape
total_valid = weights.sum() # 1
# ====================
# policy update
# ====================
actor_loss, bc_loss = acer_policy_error(
q_values, q_retraces, v_pred, target_logit, actions, ratio, self._c_clip_ratio
)
actor_loss = actor_loss * weights.unsqueeze(-1)
bc_loss = bc_loss * weights.unsqueeze(-1)
dist_new = torch.distributions.categorical.Categorical(logits=target_logit)
entropy_loss = (dist_new.entropy() * weights).unsqueeze(-1) # shape T,B,1
total_actor_loss = (actor_loss + bc_loss + self._entropy_weight * entropy_loss).sum() / total_valid
self._optimizer_actor.zero_grad()
actor_gradients = torch.autograd.grad(-total_actor_loss, target_logit, retain_graph=True)
if self._use_trust_region:
actor_gradients = acer_trust_region_update(
actor_gradients, target_logit, avg_logit, self._trust_region_value
)
target_logit.backward(actor_gradients)
self._optimizer_actor.step()
# ====================
# critic update
# ====================
critic_loss = (acer_value_error(q_values, q_retraces, actions) * weights.unsqueeze(-1)).sum() / total_valid
self._optimizer_critic.zero_grad()
critic_loss.backward()
self._optimizer_critic.step()
self._target_model.update(self._learn_model.state_dict())
with torch.no_grad():
kl_div = torch.exp(avg_logit) * (avg_logit - target_logit)
kl_div = (kl_div.sum(-1) * weights).sum() / total_valid
return {
'cur_actor_lr': self._optimizer_actor.defaults['lr'],
'cur_critic_lr': self._optimizer_critic.defaults['lr'],
'actor_loss': (actor_loss.sum() / total_valid).item(),
'bc_loss': (bc_loss.sum() / total_valid).item(),
'policy_loss': total_actor_loss.item(),
'critic_loss': critic_loss.item(),
'entropy_loss': (entropy_loss.sum() / total_valid).item(),
'kl_div': kl_div.item()
}
def _reshape_data(
self, action_data: Dict[str, Any], avg_action_data: Dict[str, Any], q_value_data: Dict[str, Any],
data: Dict[str, Any]
) -> Tuple[Any, Any, Any, Any, Any, Any]:
r"""
Overview:
Obtain weights for loss calculating, where should be 0 for done positions
Update values and rewards with the weight
Arguments:
- output (:obj:`Dict[int, Any]`): Dict type data, output of learn_model forward. \
Values are torch.Tensor or np.ndarray or dict/list combinations, keys are value, logit.
- data (:obj:`Dict[int, Any]`): Dict type data, input of policy._forward_learn \
Values are torch.Tensor or np.ndarray or dict/list combinations. Keys includes at \
least ['logit', 'action', 'reward', 'done',]
Returns:
- data (:obj:`Tuple[Any]`): Tuple of target_logit, behaviour_logit, actions, \
values, rewards, weights
ReturnsShapes:
- target_logit (:obj:`torch.FloatTensor`): :math:`((T+1), B, Obs_Shape)`, where T is timestep,\
B is batch size and Obs_Shape is the shape of single env observation.
- behaviour_logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim.
- avg_action_logit (:obj:`torch.FloatTensor`): :math: `(T+1, B, N)`, where N is action dim.
- actions (:obj:`torch.LongTensor`): :math:`(T, B)`
- values (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
- rewards (:obj:`torch.FloatTensor`): :math:`(T, B)`
- weights (:obj:`torch.FloatTensor`): :math:`(T, B)`
"""
target_logit = action_data['logit'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
behaviour_logit = data['logit'] # shape T,B,env_action_shape
avg_action_logit = avg_action_data['logit'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
actions = data['action'] # shape T,B
values = q_value_data['q_value'].reshape(
self._unroll_len + 1, -1, self._action_shape
) # shape (T+1),B,env_action_shape
rewards = data['reward'] # shape T,B
weights_ = 1 - data['done'] # shape T,B
weights = torch.ones_like(rewards) # shape T,B
weights = weights_
return target_logit, behaviour_logit, avg_action_logit, actions, values, rewards, weights
def _state_dict_learn(self) -> Dict[str, Any]:
r"""
Overview:
Return the state_dict of learn mode, usually including model and optimizer.
Returns:
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring.
"""
return {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'actor_optimizer': self._optimizer_actor.state_dict(),
'critic_optimizer': self._optimizer_critic.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
r"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_actor.load_state_dict(state_dict['actor_optimizer'])
self._optimizer_critic.load_state_dict(state_dict['critic_optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``, initialize algorithm arguments and collect_model.
Use multinomial_sample to choose action.
"""
self._collect_unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Dict[str, Any]]:
r"""
Overview:
Forward computation graph of collect mode(collect training data).
Arguments:
- data (:obj:`Dict[int, Any]`): Dict type data, stacked env data for predicting \
action, values are torch.Tensor or np.ndarray or dict/list combinations,keys \
are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Dict[str, Any]]`): Dict of predicting policy_output(logit, action) for each env.
ReturnsKeys
- necessary: ``logit``, ``action``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
output = {i: d for i, d in zip(data_id, output)}
return output
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
r"""
Overview:
For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly.
Arguments:
- data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \
format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`dict`): List of training samples.
.. note::
We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
And the user can customize the this data processing procedure by overriding this two methods and collector \
itself.
"""
return get_train_sample(data, self._unroll_len)
def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation,can be torch.Tensor or np.ndarray or dict/list combinations.
- model_output (:obj:`dict`): Output of collect model, including ['logit','action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done']\
(here 'obs' indicates obs after env step).
Returns:
- transition (:obj:`dict`): Dict type transition data, including at least ['obs','next_obs', 'logit',\
'action','reward', 'done']
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': policy_output['logit'],
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``, initialize eval_model,
and use argmax_sample to choose action.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
r"""
Overview:
Forward computation graph of eval mode(evaluate policy performance), at most cases, it is similar to \
``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
- optional: ``logit``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
output = {i: d for i, d in zip(data_id, output)}
return output
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names
.. note::
The user can define and use a customized network model but must obey the same interface definition \
indicated by import_names path. For IMPALA, ``ding.model.interface.IMPALA``
"""
return ['actor_loss', 'bc_loss', 'policy_loss', 'critic_loss', 'entropy_loss', 'kl_div']