-
Notifications
You must be signed in to change notification settings - Fork 371
/
cql.py
677 lines (607 loc) · 35.3 KB
/
cql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from typing import List, Dict, Any, Tuple, Union
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Normal, Independent
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, \
qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_nstep_return_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .sac import SACPolicy
from .qrdqn import QRDQNPolicy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('cql')
class CQLPolicy(SACPolicy):
"""
Overview:
Policy class of CQL algorithm for continuous control. Paper link: https://arxiv.org/abs/2006.04779.
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ================================= =======================
1 ``type`` str cql | RL policy register name, refer | this arg is optional,
| to registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network |
3 | ``random_`` int 10000 | Number of randomly collected | Default to 10000 for
| ``collect_size`` | training samples in replay | SAC, 25000 for DDPG/
| | buffer when training starts. | TD3.
4 | ``model.policy_`` int 256 | Linear layer size for policy |
| ``embedding_size`` | network. |
5 | ``model.soft_q_`` int 256 | Linear layer size for soft q |
| ``embedding_size`` | network. |
6 | ``model.value_`` int 256 | Linear layer size for value | Defalut to None when
| ``embedding_size`` | network. | model.value_network
| | | is False.
7 | ``learn.learning`` float 3e-4 | Learning rate for soft q | Defalut to 1e-3, when
| ``_rate_q`` | network. | model.value_network
| | | is True.
8 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to 1e-3, when
| ``_rate_policy`` | network. | model.value_network
| | | is True.
9 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to None when
| ``_rate_value`` | network. | model.value_network
| | | is False.
10 | ``learn.alpha`` float 0.2 | Entropy regularization | alpha is initiali-
| | coefficient. | zation for auto
| | | `alpha`, when
| | | auto_alpha is True
11 | ``learn.repara_`` bool True | Determine whether to use |
| ``meterization`` | reparameterization trick. |
12 | ``learn.`` bool False | Determine whether to use | Temperature parameter
| ``auto_alpha`` | auto temperature parameter | determines the
| | `alpha`. | relative importance
| | | of the entropy term
| | | against the reward.
13 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in halfcheetah env.
14 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver
| | | aging for target
| | | networks.
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='cql',
# (bool) Whether to use cuda for policy.
cuda=False,
# (bool) on_policy: Determine whether on-policy or off-policy.
# on-policy setting influences the behaviour of buffer.
on_policy=False,
# (bool) priority: Determine whether to use priority in buffer sample.
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples(randomly collected) in replay buffer when training starts.
random_collect_size=10000,
model=dict(
# (bool type) twin_critic: Determine whether to use double-soft-q-net for target q computation.
# Please refer to TD3 about Clipped Double-Q Learning trick, which learns two Q-functions instead of one .
# Default to True.
twin_critic=True,
# (str type) action_space: Use reparameterization trick for continous action
action_space='reparameterization',
# (int) Hidden size for actor network head.
actor_head_hidden_size=256,
# (int) Hidden size for critic network head.
critic_head_hidden_size=256,
),
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for gradient descent.
batch_size=256,
# (float) learning_rate_q: Learning rate for soft q network.
learning_rate_q=3e-4,
# (float) learning_rate_policy: Learning rate for policy network.
learning_rate_policy=3e-4,
# (float) learning_rate_alpha: Learning rate for auto temperature parameter ``alpha``.
learning_rate_alpha=3e-4,
# (float) target_theta: Used for soft update of the target network,
# aka. Interpolation factor in polyak averaging for target networks.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (float) alpha: Entropy regularization coefficient.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`.
# Default to 0.2.
alpha=0.2,
# (bool) auto_alpha: Determine whether to use auto temperature parameter `\alpha` .
# Temperature parameter determines the relative importance of the entropy term against the reward.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# Default to False.
# Note that: Using auto alpha needs to set learning_rate_alpha in `cfg.policy.learn`.
auto_alpha=True,
# (bool) log_space: Determine whether to use auto `\alpha` in log space.
log_space=True,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float) Weight uniform initialization range in the last output layer.
init_w=3e-3,
# (int) The numbers of action sample each at every state s from a uniform-at-random.
num_actions=10,
# (bool) Whether use lagrange multiplier in q value loss.
with_lagrange=False,
# (float) The threshold for difference in Q-values.
lagrange_thresh=-1,
# (float) Loss weight for conservative item.
min_q_weight=1.0,
# (bool) Whether to use entropy in target q.
with_q_entropy=False,
),
eval=dict(), # for compatibility
)
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \
contains three optimizers, algorithm-specific arguments such as gamma, min_q_weight, with_lagrange and \
with_q_entropy, main and target model. Especially, the ``auto_alpha`` mechanism for balancing max entropy \
target is also initialized here.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._twin_critic = self._cfg.model.twin_critic
self._num_actions = self._cfg.learn.num_actions
self._min_q_version = 3
self._min_q_weight = self._cfg.learn.min_q_weight
self._with_lagrange = self._cfg.learn.with_lagrange and (self._lagrange_thresh > 0)
self._lagrange_thresh = self._cfg.learn.lagrange_thresh
if self._with_lagrange:
self.target_action_gap = self._lagrange_thresh
self.log_alpha_prime = torch.tensor(0.).to(self._device).requires_grad_()
self.alpha_prime_optimizer = Adam(
[self.log_alpha_prime],
lr=self._cfg.learn.learning_rate_q,
)
self._with_q_entropy = self._cfg.learn.with_q_entropy
# Weight Init
init_w = self._cfg.learn.init_w
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w)
if self._twin_critic:
self._model.critic_head[0][-1].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[0][-1].last.bias.data.uniform_(-init_w, init_w)
self._model.critic_head[1][-1].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[1][-1].last.bias.data.uniform_(-init_w, init_w)
else:
self._model.critic_head[2].last.weight.data.uniform_(-init_w, init_w)
self._model.critic_head[-1].last.bias.data.uniform_(-init_w, init_w)
# Optimizers
self._optimizer_q = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_q,
)
self._optimizer_policy = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_policy,
)
# Algorithm config
self._gamma = self._cfg.learn.discount_factor
# Init auto alpha
if self._cfg.learn.auto_alpha:
if self._cfg.learn.target_entropy is None:
assert 'action_shape' in self._cfg.model, "CQL need network model with action_shape variable"
self._target_entropy = -np.prod(self._cfg.model.action_shape)
else:
self._target_entropy = self._cfg.learn.target_entropy
if self._cfg.learn.log_space:
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha]))
self._log_alpha = self._log_alpha.to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha)
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad
self._alpha = self._log_alpha.detach().exp()
self._auto_alpha = True
self._log_space = True
else:
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha)
self._auto_alpha = True
self._log_space = False
else:
self._alpha = torch.tensor(
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32
)
self._auto_alpha = False
# Main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
self._forward_learn_cnt = 0
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the offline dataset and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For CQL, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if len(data.get('action').shape) == 1:
data['action'] = data['action'].reshape(-1, 1)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
self._target_model.train()
obs = data['obs']
next_obs = data['next_obs']
reward = data['reward']
done = data['done']
# 1. predict q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# 2. predict target value
with torch.no_grad():
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
next_action = torch.tanh(pred)
y = 1 - next_action.pow(2) + 1e-6
next_log_prob = dist.log_prob(pred).unsqueeze(-1)
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True)
next_data = {'obs': next_obs, 'action': next_action}
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
# the value of a policy according to the maximum entropy objective
if self._twin_critic:
# find min one as target q value
if self._with_q_entropy:
target_q_value = torch.min(target_q_value[0],
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1)
else:
target_q_value = torch.min(target_q_value[0], target_q_value[1])
else:
if self._with_q_entropy:
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1)
# 3. compute q loss
if self._twin_critic:
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma)
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight'])
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma)
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2
else:
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma)
# 4. add CQL
curr_actions_tensor, curr_log_pis = self._get_policy_actions(data, self._num_actions)
new_curr_actions_tensor, new_log_pis = self._get_policy_actions({'obs': next_obs}, self._num_actions)
random_actions_tensor = torch.FloatTensor(curr_actions_tensor.shape).uniform_(-1,
1).to(curr_actions_tensor.device)
obs_repeat = obs.unsqueeze(1).repeat(1, self._num_actions,
1).view(obs.shape[0] * self._num_actions, obs.shape[1])
act_repeat = data['action'].unsqueeze(1).repeat(1, self._num_actions, 1).view(
data['action'].shape[0] * self._num_actions, data['action'].shape[1]
)
q_rand = self._get_q_value({'obs': obs_repeat, 'action': random_actions_tensor})
# q2_rand = self._get_q_value(obs, random_actions_tensor, network=self.qf2)
q_curr_actions = self._get_q_value({'obs': obs_repeat, 'action': curr_actions_tensor})
# q2_curr_actions = self._get_tensor_values(obs, curr_actions_tensor, network=self.qf2)
q_next_actions = self._get_q_value({'obs': obs_repeat, 'action': new_curr_actions_tensor})
# q2_next_actions = self._get_tensor_values(obs, new_curr_actions_tensor, network=self.qf2)
cat_q1 = torch.cat([q_rand[0], q_value[0].reshape(-1, 1, 1), q_next_actions[0], q_curr_actions[0]], 1)
cat_q2 = torch.cat([q_rand[1], q_value[1].reshape(-1, 1, 1), q_next_actions[1], q_curr_actions[1]], 1)
std_q1 = torch.std(cat_q1, dim=1)
std_q2 = torch.std(cat_q2, dim=1)
if self._min_q_version == 3:
# importance sampled version
random_density = np.log(0.5 ** curr_actions_tensor.shape[-1])
cat_q1 = torch.cat(
[
q_rand[0] - random_density, q_next_actions[0] - new_log_pis.detach(),
q_curr_actions[0] - curr_log_pis.detach()
], 1
)
cat_q2 = torch.cat(
[
q_rand[1] - random_density, q_next_actions[1] - new_log_pis.detach(),
q_curr_actions[1] - curr_log_pis.detach()
], 1
)
min_qf1_loss = torch.logsumexp(cat_q1, dim=1).mean() * self._min_q_weight
min_qf2_loss = torch.logsumexp(cat_q2, dim=1).mean() * self._min_q_weight
"""Subtract the log likelihood of data"""
min_qf1_loss = min_qf1_loss - q_value[0].mean() * self._min_q_weight
min_qf2_loss = min_qf2_loss - q_value[1].mean() * self._min_q_weight
if self._with_lagrange:
alpha_prime = torch.clamp(self.log_alpha_prime.exp(), min=0.0, max=1000000.0)
min_qf1_loss = alpha_prime * (min_qf1_loss - self.target_action_gap)
min_qf2_loss = alpha_prime * (min_qf2_loss - self.target_action_gap)
self.alpha_prime_optimizer.zero_grad()
alpha_prime_loss = (-min_qf1_loss - min_qf2_loss) * 0.5
alpha_prime_loss.backward(retain_graph=True)
self.alpha_prime_optimizer.step()
loss_dict['critic_loss'] += min_qf1_loss
if self._twin_critic:
loss_dict['twin_critic_loss'] += min_qf2_loss
# 5. update q network
self._optimizer_q.zero_grad()
loss_dict['critic_loss'].backward(retain_graph=True)
if self._twin_critic:
loss_dict['twin_critic_loss'].backward()
self._optimizer_q.step()
# 6. evaluate to get action distribution
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': obs, 'action': action}
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
# 8. compute policy loss
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean()
loss_dict['policy_loss'] = policy_loss
# 9. update policy network
self._optimizer_policy.zero_grad()
loss_dict['policy_loss'].backward()
self._optimizer_policy.step()
# 10. compute alpha loss
if self._auto_alpha:
if self._log_space:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
else:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = max(0, self._alpha)
loss_dict['total_loss'] = sum(loss_dict.values())
# =============
# after update
# =============
self._forward_learn_cnt += 1
# target update
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_q': self._optimizer_q.defaults['lr'],
'cur_lr_p': self._optimizer_policy.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.detach().mean().item(),
'alpha': self._alpha.item(),
'target_q_value': target_q_value.detach().mean().item(),
**loss_dict
}
def _get_policy_actions(self, data: Dict, num_actions: int = 10, epsilon: float = 1e-6) -> List:
# evaluate to get action distribution
obs = data['obs']
obs = obs.unsqueeze(1).repeat(1, num_actions, 1).view(obs.shape[0] * num_actions, obs.shape[1])
(mu, sigma) = self._learn_model.forward(obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
# evaluate action log prob depending on Jacobi determinant.
y = 1 - action.pow(2) + epsilon
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
return action, log_prob.view(-1, num_actions, 1)
def _get_q_value(self, data: Dict, keep: bool = True) -> torch.Tensor:
new_q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = [value.view(-1, self._num_actions, 1) for value in new_q_value]
else:
new_q_value = new_q_value.view(-1, self._num_actions, 1)
if self._twin_critic and not keep:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
return new_q_value
@POLICY_REGISTRY.register('discrete_cql')
class DiscreteCQLPolicy(QRDQNPolicy):
"""
Overview:
Policy class of discrete CQL algorithm in discrete action space environments.
Paper link: https://arxiv.org/abs/2006.04779.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='discrete_cql',
# (bool) Whether to use cuda for policy.
cuda=False,
# (bool) Whether the RL algorithm is on-policy or off-policy.
on_policy=False,
# (bool) Whether use priority(priority sample, IS weight, update priority)
priority=False,
# (float) Reward's future discount factor, aka. gamma.
discount_factor=0.97,
# (int) N-step reward for target q_value estimation
nstep=1,
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for one gradient descent.
batch_size=64,
# (float) Learning rate for soft q network.
learning_rate=0.001,
# (int) Frequence of target network update.
target_update_freq=100,
# (bool) Whether ignore done(usually for max step termination env).
ignore_done=False,
# (float) Loss weight for conservative item.
min_q_weight=1.0,
),
eval=dict(), # for compatibility
)
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For DiscreteCQL, it mainly \
contains the optimizer, algorithm-specific arguments such as gamma, nstep and min_q_weight, main and \
target model. This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._min_q_weight = self._cfg.learn.min_q_weight
self._priority = self._cfg.priority
# Optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
self._gamma = self._cfg.discount_factor
self._nstep = self._cfg.nstep
# use wrapper instead of plugin
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='assign',
update_kwargs={'freq': self._cfg.learn.target_update_freq}
)
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the offline dataset and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For DiscreteCQL, each element in list is a dict containing at least the following keys: ``obs``, \
``action``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys like ``weight`` \
and ``value_gamma`` for nstep return computation.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
"""
data = default_preprocess_learn(
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True
)
if self._cuda:
data = to_device(data, self._device)
if data['action'].dim() == 2 and data['action'].shape[-1] == 1:
data['action'] = data['action'].squeeze(-1)
# ====================
# Q-learning forward
# ====================
self._learn_model.train()
self._target_model.train()
# Current q value (main model)
ret = self._learn_model.forward(data['obs'])
q_value, tau = ret['q'], ret['tau']
# Target q value
with torch.no_grad():
target_q_value = self._target_model.forward(data['next_obs'])['q']
# Max q value action (main model)
target_q_action = self._learn_model.forward(data['next_obs'])['action']
# add CQL
# 1. chose action and compute q in dataset.
# 2. compute value loss(negative_sampling - dataset_expec)
replay_action_one_hot = F.one_hot(data['action'], self._cfg.model.action_shape)
replay_chosen_q = (q_value.mean(-1) * replay_action_one_hot).sum(dim=1)
dataset_expec = replay_chosen_q.mean()
negative_sampling = torch.logsumexp(q_value.mean(-1), dim=1).mean()
min_q_loss = negative_sampling - dataset_expec
data_n = qrdqn_nstep_td_data(
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], tau, data['weight']
)
value_gamma = data.get('value_gamma')
loss, td_error_per_sample = qrdqn_nstep_td_error(
data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma
)
loss += self._min_q_weight * min_q_loss
# ====================
# Q-learning update
# ====================
self._optimizer.zero_grad()
loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
self._optimizer.step()
# =============
# after update
# =============
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': loss.item(),
'priority': td_error_per_sample.abs().tolist(),
'q_target': target_q_value.mean().item(),
'q_value': q_value.mean().item(),
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard.
# '[histogram]action_distribution': data['action'],
}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
return ['cur_lr', 'total_loss', 'q_target', 'q_value']