-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
regression.py
212 lines (197 loc) · 8.12 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''
Created on Jan 8, 2011
@author: Peter
'''
from numpy import *
def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat,labelMat
def standRegres(xArr,yArr):
xMat = mat(xArr); yMat = mat(yArr).T
xTx = xMat.T*xMat
if linalg.det(xTx) == 0.0:
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T*yMat)
return ws
def lwlr(testPoint,xArr,yArr,k=1.0):
xMat = mat(xArr); yMat = mat(yArr).T
m = shape(xMat)[0]
weights = mat(eye((m)))
for j in range(m): #next 2 lines create weights matrix
diffMat = testPoint - xMat[j,:] #
weights[j,j] = exp(diffMat*diffMat.T/(-2.0*k**2))
xTx = xMat.T * (weights * xMat)
if linalg.det(xTx) == 0.0:
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T * (weights * yMat))
return testPoint * ws
def lwlrTest(testArr,xArr,yArr,k=1.0): #loops over all the data points and applies lwlr to each one
m = shape(testArr)[0]
yHat = zeros(m)
for i in range(m):
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
return yHat
def lwlrTestPlot(xArr,yArr,k=1.0): #same thing as lwlrTest except it sorts X first
yHat = zeros(shape(yArr)) #easier for plotting
xCopy = mat(xArr)
xCopy.sort(0)
for i in range(shape(xArr)[0]):
yHat[i] = lwlr(xCopy[i],xArr,yArr,k)
return yHat,xCopy
def rssError(yArr,yHatArr): #yArr and yHatArr both need to be arrays
return ((yArr-yHatArr)**2).sum()
def ridgeRegres(xMat,yMat,lam=0.2):
xTx = xMat.T*xMat
denom = xTx + eye(shape(xMat)[1])*lam
if linalg.det(denom) == 0.0:
print "This matrix is singular, cannot do inverse"
return
ws = denom.I * (xMat.T*yMat)
return ws
def ridgeTest(xArr,yArr):
xMat = mat(xArr); yMat=mat(yArr).T
yMean = mean(yMat,0)
yMat = yMat - yMean #to eliminate X0 take mean off of Y
#regularize X's
xMeans = mean(xMat,0) #calc mean then subtract it off
xVar = var(xMat,0) #calc variance of Xi then divide by it
xMat = (xMat - xMeans)/xVar
numTestPts = 30
wMat = zeros((numTestPts,shape(xMat)[1]))
for i in range(numTestPts):
ws = ridgeRegres(xMat,yMat,exp(i-10))
wMat[i,:]=ws.T
return wMat
def regularize(xMat):#regularize by columns
inMat = xMat.copy()
inMeans = mean(inMat,0) #calc mean then subtract it off
inVar = var(inMat,0) #calc variance of Xi then divide by it
inMat = (inMat - inMeans)/inVar
return inMat
def stageWise(xArr,yArr,eps=0.01,numIt=100):
xMat = mat(xArr); yMat=mat(yArr).T
yMean = mean(yMat,0)
yMat = yMat - yMean #can also regularize ys but will get smaller coef
xMat = regularize(xMat)
m,n=shape(xMat)
#returnMat = zeros((numIt,n)) #testing code remove
ws = zeros((n,1)); wsTest = ws.copy(); wsMax = ws.copy()
for i in range(numIt):
print ws.T
lowestError = inf;
for j in range(n):
for sign in [-1,1]:
wsTest = ws.copy()
wsTest[j] += eps*sign
yTest = xMat*wsTest
rssE = rssError(yMat.A,yTest.A)
if rssE < lowestError:
lowestError = rssE
wsMax = wsTest
ws = wsMax.copy()
#returnMat[i,:]=ws.T
#return returnMat
#def scrapePage(inFile,outFile,yr,numPce,origPrc):
# from BeautifulSoup import BeautifulSoup
# fr = open(inFile); fw=open(outFile,'a') #a is append mode writing
# soup = BeautifulSoup(fr.read())
# i=1
# currentRow = soup.findAll('table', r="%d" % i)
# while(len(currentRow)!=0):
# title = currentRow[0].findAll('a')[1].text
# lwrTitle = title.lower()
# if (lwrTitle.find('new') > -1) or (lwrTitle.find('nisb') > -1):
# newFlag = 1.0
# else:
# newFlag = 0.0
# soldUnicde = currentRow[0].findAll('td')[3].findAll('span')
# if len(soldUnicde)==0:
# print "item #%d did not sell" % i
# else:
# soldPrice = currentRow[0].findAll('td')[4]
# priceStr = soldPrice.text
# priceStr = priceStr.replace('$','') #strips out $
# priceStr = priceStr.replace(',','') #strips out ,
# if len(soldPrice)>1:
# priceStr = priceStr.replace('Free shipping', '') #strips out Free Shipping
# print "%s\t%d\t%s" % (priceStr,newFlag,title)
# fw.write("%d\t%d\t%d\t%f\t%s\n" % (yr,numPce,newFlag,origPrc,priceStr))
# i += 1
# currentRow = soup.findAll('table', r="%d" % i)
# fw.close()
from time import sleep
import json
import urllib2
def searchForSet(retX, retY, setNum, yr, numPce, origPrc):
sleep(10)
myAPIstr = 'AIzaSyD2cR2KFyx12hXu6PFU-wrWot3NXvko8vY'
searchURL = 'https://www.googleapis.com/shopping/search/v1/public/products?key=%s&country=US&q=lego+%d&alt=json' % (myAPIstr, setNum)
pg = urllib2.urlopen(searchURL)
retDict = json.loads(pg.read())
for i in range(len(retDict['items'])):
try:
currItem = retDict['items'][i]
if currItem['product']['condition'] == 'new':
newFlag = 1
else: newFlag = 0
listOfInv = currItem['product']['inventories']
for item in listOfInv:
sellingPrice = item['price']
if sellingPrice > origPrc * 0.5:
print "%d\t%d\t%d\t%f\t%f" % (yr,numPce,newFlag,origPrc, sellingPrice)
retX.append([yr, numPce, newFlag, origPrc])
retY.append(sellingPrice)
except: print 'problem with item %d' % i
def setDataCollect(retX, retY):
searchForSet(retX, retY, 8288, 2006, 800, 49.99)
searchForSet(retX, retY, 10030, 2002, 3096, 269.99)
searchForSet(retX, retY, 10179, 2007, 5195, 499.99)
searchForSet(retX, retY, 10181, 2007, 3428, 199.99)
searchForSet(retX, retY, 10189, 2008, 5922, 299.99)
searchForSet(retX, retY, 10196, 2009, 3263, 249.99)
def crossValidation(xArr,yArr,numVal=10):
m = len(yArr)
indexList = range(m)
errorMat = zeros((numVal,30))#create error mat 30columns numVal rows
for i in range(numVal):
trainX=[]; trainY=[]
testX = []; testY = []
random.shuffle(indexList)
for j in range(m):#create training set based on first 90% of values in indexList
if j < m*0.9:
trainX.append(xArr[indexList[j]])
trainY.append(yArr[indexList[j]])
else:
testX.append(xArr[indexList[j]])
testY.append(yArr[indexList[j]])
wMat = ridgeTest(trainX,trainY) #get 30 weight vectors from ridge
for k in range(30):#loop over all of the ridge estimates
matTestX = mat(testX); matTrainX=mat(trainX)
meanTrain = mean(matTrainX,0)
varTrain = var(matTrainX,0)
matTestX = (matTestX-meanTrain)/varTrain #regularize test with training params
yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)#test ridge results and store
errorMat[i,k]=rssError(yEst.T.A,array(testY))
#print errorMat[i,k]
meanErrors = mean(errorMat,0)#calc avg performance of the different ridge weight vectors
minMean = float(min(meanErrors))
bestWeights = wMat[nonzero(meanErrors==minMean)]
#can unregularize to get model
#when we regularized we wrote Xreg = (x-meanX)/var(x)
#we can now write in terms of x not Xreg: x*w/var(x) - meanX/var(x) +meanY
xMat = mat(xArr); yMat=mat(yArr).T
meanX = mean(xMat,0); varX = var(xMat,0)
unReg = bestWeights/varX
print "the best model from Ridge Regression is:\n",unReg
print "with constant term: ",-1*sum(multiply(meanX,unReg)) + mean(yMat)