forked from yfeng95/face3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
draft.py
383 lines (302 loc) · 13 KB
/
draft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import logging
from numpy.core.fromnumeric import squeeze
from numpy.random import rand
from face3d.mesh import light
import re
import cv2
import scipy.io as sio
from face3d.utils import *
from face3d.face_model import FaceModel, _get_colors
from face3d import mesh
from utils import close_eyes_68_ver_1, close_eyes_68_ver_2, crop
import numpy as np
import random
import time
fm = FaceModel(n_shape=40, n_exp=20)
import numba
from scipy import ndimage
# @numba.njit()
def _get_colors_depth(img, img_vertices):
colors = np.zeros((len(img_vertices),3))
depths = img_vertices.T[-1]
depths = depths/np.max(depths)
for idx in range(len(img_vertices)):
value = depths[idx]
colors[idx] = np.array([value, value, value])
return colors
def light_test(vertices, light_positions, light_intensities, h = 256, w = 256, colors=None, light=True, depth=False):
if colors is None:
if depth:
colors = _get_colors_depth()
else:
colors = fm.bfm.generate_colors(fm.bfm.get_tex_para())
colors = colors/np.max(colors)
if light == True:
lit_colors = mesh.light.add_light(vertices, fm.bfm.triangles, colors, light_positions, light_intensities)
else:
lit_colors = colors
image_vertices = mesh.transform.to_image(vertices, h, w)
# image_vertices = vertices
rendering = mesh.render.render_colors(image_vertices, fm.bfm.triangles, lit_colors, h, w)
rendering = np.minimum((np.maximum(rendering, 0)), 1)
return rendering, image_vertices
def squeeze_face(img, pts, pad_ratio=None, squeeze_type='v'):
### Squeeze image and landmarks ###
# height, width = img.shape[:2]
box_left, box_top, box_right, box_bot = get_landmarks_wrapbox(pts)
size = min(box_right-box_left, box_bot-box_top)
if pad_ratio is None:
pad_ratio = random.uniform(0.45, 0.55)
pad = int(size * pad_ratio)
if squeeze_type is None:
squeeze_type = random.choice(['v', 'h'])
if squeeze_type == 'v' or squeeze_type == 'vertical':
padded_img = cv2.copyMakeBorder(img, 0, 0, pad, pad, cv2.BORDER_CONSTANT, 0)
padded_pts = pts.T
padded_pts[0] += pad
padded_pts = padded_pts.T
elif squeeze_type == 'h' or squeeze_type == 'horizontal':
padded_img = cv2.copyMakeBorder(img, pad, pad, 0, 0, cv2.BORDER_CONSTANT, 0)
padded_pts = pts.T
padded_pts[1] += pad
padded_pts = padded_pts.T
resized_img, resized_pts = resize_face_landmarks(padded_img, padded_pts, shape=(width, height))
### Generate 3ddfa params ###
n_img, info = fm.generate_3ddfa_params(resized_img, resized_pts, False, shape=(450,450))
re_pts = fm.reconstruct_vertex(n_img, info['params'], False)[fm.bfm.kpt_ind]
show_pts(n_img, re_pts)
return n_img, info
# @numba.njit()
def random_crop_substep(img, roi_box, params, expand_ratio=None, target_size=None, radius=None):
camera_matrix = params[:12].reshape(3, -1)
trans = camera_matrix[:, 3]
R1 = camera_matrix[0:1, :3]
R2 = camera_matrix[1:2, :3]
scale = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0
r1 = R1/np.linalg.norm(R1)
r2 = R2/np.linalg.norm(R2)
r3 = np.cross(r1, r2)
rotation_matrix = np.concatenate((r1, r2, r3), 0)
# Get the box that wrap all landmarks.
box_left = roi_box[0]
box_right = roi_box[2]
box_top = roi_box[1]
box_bot = roi_box[3]
# Crop image to get the largest square region that satisfied:
# 1. Contains all landmarks
# 2. Center of the landmarks box is the center of the region.
center = [(box_right+box_left)/2, (box_bot+box_top)/2]
# Get the diameter of largest region
# that a landmark can reach when rotating.
box_height = box_bot-box_top
box_width = box_right-box_left
if radius is None:
radius = max(box_height, box_width) / 2
max_length = 2*np.sqrt(2)*radius
# Crop a bit larger.
if expand_ratio is None:
expand_ratio = random.uniform(0.8, 1.1)
else:
expand_ratio = expand_ratio
crop_size = int(max_length/2 * expand_ratio)
img_height, img_width, channel = img.shape
canvas = np.zeros((img_height+2*crop_size, img_width+2*crop_size, channel), dtype=np.uint8)
canvas[crop_size:img_height+crop_size, crop_size:img_width+crop_size, :] = img
# shift_value = int(max_length/2 * expand_ratio - radius)
'''
0.125 is purely selected from visualization.
'''
# shift_value_x = int(box_width * 0.125 + shift_value)
# shift_value_y = int(box_height * 0.125 + shift_value)
# shift_value_x = shift_value
# shift_value_y = shift_value
# shift_x = random.randrange(-shift_value_x, shift_value_x)
# shift_y = random.randrange(-shift_value_y, shift_value_y)
# shift_x = shift_value_x
# shift_y = shift_value_y
center_x = int(center[0] + crop_size)
center_y = int(center[1] + crop_size)
# Top left bottom right.
y1 = center_y-crop_size
x1 = center_x-crop_size
y2 = center_y+crop_size
x2 = center_x+crop_size
n_box_left = box_left + crop_size - x1
n_box_right = box_right + crop_size - x1
n_box_top = box_top + crop_size - y1
n_box_bot = box_bot + crop_size - y1
n_roi_box = [n_box_left, n_box_top, n_box_right, n_box_bot]
cropped_img = canvas[y1:y2, x1:x2]
flip_matrix = np.array([[1,0,0],[0,-1,0],[0,0,1]], dtype=np.float64)
flip_offset = np.array([0, img_height, 0], dtype=np.float64)
norm_trans = np.array([img_width/2, img_height/2, 0], dtype=np.float64)
cropped_trans = (flip_offset + np.array([-x1, -y1, 0])).reshape(3,) @ flip_matrix.T + norm_trans + trans
if target_size is None:
resized_scale = scale
resized_trans = cropped_trans
else:
resized_scale = scale / (2*crop_size) * target_size
resized_trans = cropped_trans / (2*crop_size) * target_size
re_scaled_rot_matrix = resized_scale * rotation_matrix
re_camera_matrix = np.concatenate((re_scaled_rot_matrix, resized_trans.reshape(-1,1)), axis=1)
re_params = np.concatenate((re_camera_matrix.reshape(12,1), params[12:].reshape(-1,1)), axis=0)
return cropped_img, re_params, n_roi_box
def random_crop(img, roi_box, params, expand_ratio=None, target_size=None, radius=None):
'''
Random crop and resize image to target size.
'''
cropped_img, re_params, n_roi_box = random_crop_substep(img, roi_box, params, expand_ratio, target_size, radius)
if target_size is None:
re_img = cropped_img
re_roi_box = np.array(n_roi_box)
else:
re_img = cv2.resize(cropped_img, (target_size, target_size))
re_roi_box = np.array(n_roi_box) / cropped_img.shape[0] * target_size
# re_pts = fm.reconstruct_vertex(re_img, re_params)[fm.bfm.kpt_ind][:,:2]
# draw_pts(re_img, re_pts)
# import ipdb; ipdb.set_trace(context=10)
return re_img, re_params, re_roi_box
@numba.njit()
def flip_substep(img, params):
img_height, img_width = img.shape[:2]
camera_matrix = params[:12].reshape(3, -1)
trans = camera_matrix[:, 3]
R1 = camera_matrix[0:1, :3]
R2 = camera_matrix[1:2, :3]
scale = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0
r1 = R1/np.linalg.norm(R1)
r2 = R2/np.linalg.norm(R2)
r3 = np.cross(r1, r2)
rotation_matrix = np.concatenate((r1, r2, r3), 0)
flip_matrix = np.array([[1,0,0],[0,-1,0],[0,0,1]], dtype=np.float64)
flip_offset = np.array([0, img_height, 0], dtype=np.float64)
norm_trans = np.array([img_width/2, img_height/2, 0], dtype=np.float64)
flipped_rotation_matrix = flip_matrix @ (scale*rotation_matrix)
flipped_trans = (trans + norm_trans) @ flip_matrix.T + flip_offset - norm_trans
flipped_camera_matrix = np.concatenate((flipped_rotation_matrix, flipped_trans.reshape(-1,1)), axis=1)
flipped_params = np.concatenate((flipped_camera_matrix.reshape(12,1), params[12:].reshape(-1,1)), axis=0)
return flipped_params
def flip(img, params):
flipped_params = flip_substep(img, params)
flipped_img = cv2.flip(img, 0)
re_pts = fm.reconstruct_vertex(flipped_img, flipped_params, False)[fm.bfm.kpt_ind]
show_pts(flipped_img, re_pts)
def pointcloud_to_depth_map(pointcloud: np.ndarray, theta_res=150, phi_res=32, max_depth=50, phi_min_degrees=60,
phi_max_degrees=100) -> np.ndarray:
"""
All params are set so they match default carla lidar settings
"""
assert pointcloud.shape[1] == 3, 'Must have (N, 3) shape'
assert len(pointcloud.shape) == 2, 'Must have (N, 3) shape'
xs = pointcloud[:, 0]
ys = pointcloud[:, 1]
zs = pointcloud[:, 2]
rs = np.sqrt(np.square(xs) + np.square(ys) + np.square(zs))
phi_min = np.deg2rad(phi_min_degrees)
phi_max = np.deg2rad(phi_max_degrees)
phi_range = phi_max - phi_min
phis = np.arccos(zs / rs)
THETA_MIN = -np.pi
THETA_MAX = np.pi
THETA_RANGE = THETA_MAX - THETA_MIN
thetas = np.arctan2(xs, ys)
phi_indices = ((phis - phi_min) / phi_range) * (phi_res - 1)
phi_indices = np.rint(phi_indices).astype(np.int16)
theta_indices = ((thetas - THETA_MIN) / THETA_RANGE) * theta_res
theta_indices = np.rint(theta_indices).astype(np.int16)
theta_indices[theta_indices == theta_res] = 0
normalized_r = rs / max_depth
canvas = np.ones(shape=(theta_res, phi_res), dtype=np.float32)
# We might need to filter out out-of-bound phi values, if min-max degrees doesnt match lidar settings
canvas[theta_indices, phi_indices] = normalized_r
return canvas
if __name__=='__main__':
img = cv2.imread('examples/Data/image00050.jpg')
pts = sio.loadmat('examples/Data/image00050.mat')['pt3d_68'].T[:,:2]
# img = cv2.imread('examples/Data/300WLP-std_134212_1_0.jpg')
# pts = sio.loadmat('examples/Data/300WLP-std_134212_1_0.mat')['pt3d']
size = 450
height, width = img.shape[:2]
'''
Close eyes
'''
# pts[37] = pts[41]
# pts[38] = pts[40]
# pts[43] = pts[47]
# pts[44] = pts[46]
# n_img, info = fm.generate_3ddfa_params(img, pts, False, shape=(size,size), expand_ratio=1.)
# re_pts = fm.reconstruct_vertex(n_img, info['params'], False)[fm.bfm.kpt_ind]
# show_vertices(re_pts)
'''
Generate params
'''
n_img, info = fm.generate_3ddfa_params(img, pts, False, shape=(size,size), expand_ratio=1.)
'''
Random crop
'''
# for _ in range(10):
# t0 = time.time()
# n_img, n_params,_ = random_crop(n_img, info['roi_box'], info['params'], expand_ratio=10, radius=300, target_size=128)
# print(time.time()-t0)
# re_pts = fm.reconstruct_vertex(n_img, n_params, False)[fm.bfm.kpt_ind]
# show_pts(n_img, re_pts)
'''
Flip vertically
'''
# flip(n_img, info['params'])
'''
Squeeze face
'''
# squeeze_face(img, pts, 0.3, 'h')
'''
Light
'''
shp, exp, scale, angles, trans = fm._parse_params(info['params'], False)
vertices = fm.bfm.reduced_generated_vertices(shp, exp)
vertices = vertices - np.mean(vertices, 0)[np.newaxis, :]
vertices = mesh.transform.similarity_transform(
vertices,
scale,
mesh.transform.angle2matrix([0, 0, 0]),
[0, 0, 0])
vertices = fm.reconstruct_vertex(n_img, info['params'], False).astype(int)
colors = _get_colors_depth(n_img, vertices)
vertices[:,1] = height - vertices[:,1] - 1
vertices = vertices - np.mean(vertices, 0)[np.newaxis, :]
# flip vertices along y-axis.
light_positions = np.array([[0,-200,300]])
light_intensities = np.array([[1,1,1]])
light_img, light_vertices = light_test(vertices, light_positions, light_intensities, light=False, colors=colors, h=450, w=450)
show_ndarray_img(light_img)
'''
Read params
'''
# img = cv2.imread('samples/300WLP-std_134212_1_0.jpg')
# params = sio.loadmat('samples/300WLP-std_134212_1_0.mat')['params'].reshape(-1,)
# re_pts = fm.reconstruct_vertex(img, params, False)[fm.bfm.kpt_ind]
# show_pts(img, re_pts)
'''
Rotate params
'''
# magic = [75.41140417589962, -79.51944989389769, -72.06898665794476]
# r_img, r_params = fm.augment_rotate(img, pts, [40, -20, -30])
# re_pts = fm.reconstruct_vertex(r_img, r_params, False)[fm.bfm.kpt_ind]
# show_pts(r_img, re_pts)
# img = cv2.imread('samples/300WLP-std_134212_1_12.jpg')
# pts = sio.loadmat('samples/300WLP-std_134212_1_12.mat')['pt3d']
# n_img, info = fm.generate_3ddfa_params(img, pts, False)
# re_pts = fm.reconstruct_vertex(n_img, info['params'], False)[fm.bfm.kpt_ind]
# show_pts(n_img, re_pts)
'''
Clip params
'''
# img = cv2.imread('samples/0560_0.jpg')
# params = sio.loadmat('samples/0560_0.mat')['params']
# shp, exp, scale, angles, trans = fm._parse_params(params.reshape(-1,), False)
# clipped_shp = shp[:40]
# clipped_exp = exp[:20]
# clipped_shp_exp = np.concatenate((clipped_shp, clipped_exp), axis=0)
# import ipdb; ipdb.set_trace(context=10)
# clipped_params = fm.reconstruct_params(scale, mesh.transform.angle2matrix(angles),trans, clipped_shp_exp)
# re_pts = fm.reconstruct_vertex(img, clipped_params, False)[fm.bfm.kpt_ind]
# show_vertices(re_pts)