-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cell_dxdT.m
2014 lines (1758 loc) · 104 KB
/
Cell_dxdT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [f] = Cell_dxdT(t,x,param,x_AtC,iflag,Varstruc)
% Set variables
boxVmax=Varstruc.boxVmax; % Vmax parameters of beta oxidation
boxVmax(10)=Varstruc.Trimetazidine; % Inhibitor of mckat
Kmcpt1C16AcylCarCYT = Varstruc.Kmcpt1CarCYT; %136.0/SF; Km of CPT1
% This iteration of dxdt includes changes made to \beta-oxidation model to prevent conversion of acetyl-coA to ketoacyl-coA
% This function is used to calculate time derivatives of state
% variables of the cell-level cardaic energetics.
% iflag:
% 100 - constant J_AtC = x_AtC; %Default
% 101 - constant J_AtC = x_AtC and fixed [CrP]c and [Cr]_c
%% Defining indices for all reactions in the TCA cycle
ipdh = 1;
icits = 2;
iacon = 3;
iisod = 4;
iakgd = 5;
iscoas = 6;
isdh = 7;
ifum = 8;
imdh = 9;
indk = 10;
igot = 11;
%% Setting adjustable parameter values
% Vmax values of TCA cycle fluxes
Vmax(1) = param(1);
Vmax(2) = param(2);
Vmax(3) = param(3);
Vmax(4) = param(4);
Vmax(5) = param(5);
Vmax(6) = param(6);
Vmax(7) = param(7);
Vmax(8) = param(8);
Vmax(9) = param(9);
Vmax(10)= param(10);
Vmax(11)= param(11);
% Activities of transporters
x_PYR_H = param(12);
x_GLU_H = param(13);
x_CIT_MAL = param(14);
x_AKG_MAL = param(15);
% param(16) not used
x_MAL_PI = param(17);
x_ASP_GLU = param(18);
% param(19) not used
% param(20) not used
x_SUC_MAL = param(21);
% param(22) not used
% param(23) used by Kir1 in J_akgd
% param(24) not used
% param(26) not used
% param(27) not used
% param(28) not used
% param(29) not used
% param(30) not used
% Parameters for oxidative phosphorylation
x_C1 = param(31);
x_C3 = param(32);
x_C4 = param(33);
x_F1 = param(34);
x_ANT = param(35);
x_PI1 = param(36);
k_PIH = param(37);
x_KH = param(38);
x_Hle = param(39);
k_PI1 = param(40);
k_PI2 = param(41);
ref_pyr=param(42);
% Permeability coefficients for TCA intermediates
p_TI = 85*1; % assumed to be equal to x_A for nucleotides (micro sec^-1)
x_PYRt = p_TI;
x_GLUt = p_TI;
x_ASPt = p_TI;
x_CITt = p_TI;
x_ICITt = p_TI;
x_AKGt = p_TI;
x_FUMt = 0*p_TI;
x_SUCt = p_TI;
x_MALt = p_TI;
%% Define Indices for state variables OxPhos/TCA cycle
% (i) oxygen
iPO2 = 1;
% (ii) Matrix species and dPsi
idPsi = 2;
iH_x = 3;
iATP_x = 4;
iADP_x = 5;
iAMP_x = 6;
iGTP_x = 7;
iGDP_x = 8;
iPI_x = 9;
iNADH_x = 10;
iQH2_x = 11;
iOAA_x = 12;
iACCOA_x = 13;
iCIT_x = 14;
iICIT_x = 15;
iAKG_x = 16;
iSCOA_x = 17;
iCOASH_x = 18; % not used
iSUC_x = 19;
iFUM_x = 20;
iMAL_x = 21;
iGLU_x = 22;
iASP_x = 23;
iK_x = 24;
iMg_x = 25;
iCO2tot_x = 26;
% (iii) IM space species
iCred_i = 27;
iATP_i = 28;
iADP_i = 29;
iAMP_i = 30;
iPI_i = 31;
iH_i = 32;
iMg_i = 33;
iK_i = 34;
% (iv) Cytoplasmic species
iATP_c = 35;
iADP_c = 36;
iPI_c = 37;
iH_c = 38;
iMg_c = 39;
iK_c = 40;
% others
iPYR_x = 41;
iPYR_i = 42;
iPYR_c = 43;
iCIT_i = 44;
iCIT_c = 45;
iAKG_i = 46;
iAKG_c = 47;
iSUC_i = 48;
iSUC_c = 49;
iMAL_i = 50;
iMAL_c = 51;
iASP_i = 52;
iASP_c = 53;
iGLU_i = 54;
iGLU_c = 55;
iFUM_i = 56;
iFUM_c = 57;
iICIT_i = 58;
iICIT_c = 59;
iPCr_c = 60;
iAMP_c = 61;
iCr_c = 62;
% Beta-oxidation indices
iC16Carn_cy = 63; % C16 AcylCarnitine cytosol
iC16Carn_m = 64; % C16 AcylCarnitine Matrix
iC16CoA_m = 65; % C16 AcylCoA Matrix
iC16EnoylCoA_m = 66; % C16 EnoylCoA Matrix
iC16OHCoA_m = 67; % C16 HydroxoxyacylCoA Matrix
iC16KetoCoA_m = 68; % C16 KetoacylCoA Matrix
iC14Carn_cy = 69; % C14 AcylCarnitine cytosol
iC14Carn_m = 70; % C14 AcylCarnitine Matrix
iC14CoA_m = 71; % C14 AcylCoA Matrix
iC14EnoylCoA_m = 72; % C14 EnoylCoA Matrix
iC14OHCoA_m = 73; % C14 HydroxoxyacylCoA Matrix
iC14KetoCoA_m = 74;
iC12Carn_cy = 75;
iC12Carn_m = 76;
iC12CoA_m = 77;
iC12EnoylCoA_m = 78;
iC12OHCoA_m = 79;
iC12KetoCoA_m = 80;
iC10Carn_cy = 81;
iC10Carn_m = 82;
iC10CoA_m = 83;
iC10EnoylCoA_m = 84;
iC10OHCoA_m = 85;
iC10KetoCoA_m = 86;
iC8Carn_cy = 87;
iC8Carn_m = 88;
iC8CoA_m = 89;
iC8EnoylCoA_m = 90;
iC8OHCoA_m = 91;
iC8KetoCoA_m = 92;
iC6Carn_cy = 93;
iC6Carn_m = 94;
iC6CoA_m = 95;
iC6EnoylCoA_m = 96;
iC6OHCoA_m = 97;
iC6KetoCoA_m = 98;
iC4Carn_cy = 99;
iC4Carn_m = 100;
iC4CoA_m = 101;
iC4EnoylCoA_m = 102;
iC4OHCoA_m = 103;
iC4KetoCoA_m = 104;
%% State variables that are involved in both TCA/Oxphos and b oxidation
%iAcetylCoAMAT = 105; % not used
iFADH_m = 106;
%iNADHm = 107; % not used
%iCoAMAT = 108; % not used
iC16AcylCoACYT = 109;
%% Defining indices of reactants
iH = 1;
iATP = 2;
iADP = 3;
iAMP = 4;
iGTP = 5;
iGDP = 6;
iPI = 7;
iNADH = 8;
iNAD = 9;
iQH2 = 10;
iCOQ = 11;
iOAA = 12;
iACCOA = 13;
iCIT = 14;
iICIT = 15;
iAKG = 16;
iSCOA = 17;
iCOASH = 18;
iSUC = 19;
iFUM = 20;
iMAL = 21;
iGLU = 22;
iASP = 23;
iK = 24;
iMg = 25;
iCox = 26;
iCred = 27;
iO2 = 28;
iH2O = 29;
iFADH2 = 30;
iFAD = 31;
iCO2tot = 32;
iPCr = 33;
iCr = 34;
iPYR = 35;
iGLC = 36;
iG6P = 37;
N_reactant = 37;
%% Listing fixed model parameters
% (i) Thermochemical constants
RT = 8.314*(37+273.15)/1e3; % kJ mol^{-1}
F = 0.096484; % kJ mol^{-1} mV^{-1}
% (ii) Subcelular volumes and water spaces
Vmito=2.8820e-1*Varstruc.mito_rho; % (ml mito / ml cell) Mitochondria Volume modulatd by rho to simulate mito dysfunction
Vcyto= 0.94-Vmito; % Cytoplasmic volume (less than 1) % (ml cyto / ml cell) 2.33e-11 L
Rm_cyto = Vmito / Vcyto; % Volume ratio mito volume / cytoplasm volume
Rm_cell = Vmito; % Volume ratio mito volume / cell volume
Rc_cell = Vcyto; % Volume ratio of cytosol / cell volume
% Rm_cell = 0.224; % Volume ratio mito volume / cell volume
% Rc_cell = 0.776; % Volume ratio of cytosol / cell volume
W_c = 0.807*1.044; % cytosol water space (ml water per ml cytosol) [VB2002]
W_m = 0.664*1.09; % mitochondrial water space (ml water per ml mito) [VB2002]
W_x = 0.9*W_m; % Matrix ;water space
W_i = 0.1*W_m; % IM water space
rho_m = 3.6697e-6; % (l mito) (mg protein)^{-1}
compartment_VCYT = 1.8e-5; % L cyto/mg protein Bakker et al.
compartment_VMAT = 1.8E-6; % L mito/mg protein Bakker et al.
% (iii) Pooled concentrations
Ctot = 2.70e-3; % M; total cytoC
Qtot = 1.35e-3; % M; total Q + QH2
SF=10^6;
NADtot = param(44); % M; total NAD+NADH Bakker et al.
FADtot = 0.1e-3; % M; total FADred+FADox (from Feng Yang)
% (iv) Ox Phos Model Parameters
n_A = 3.0; % unitless
k_O2 = 1.2e-4;
%k_mADP = 3.5e-6;
% (v) Outer membrane transport parameters
x_A = 85; % micron sec^{-1}
x_PI2 = 327; % micron sec^{-1}
gamma = 5.99; % mito membrane area per cell volume micron^{-1}
% (vi) Oxygen solubility
a_3 = 1.74e-6; % oxygen solubility in cell
CMb = 200e-6; % Myoglobin concentration (moles per liter cell volume)
P50 = 2.39; % oxy-myoglobin 1/2 saturation
%% Loading values of state variables
MinCon = 1e-32;
% (i) Matrix species and dPsi
PO2 = x(iPO2);
dPsi = x(idPsi);
ATP_x = x(iATP_x);
ADP_x = x(iADP_x);
AMP_x = x(iAMP_x);
GTP_x = x(iGTP_x);
GDP_x = x(iGDP_x);
PI_x = x(iPI_x);
NADH_x = x(iNADH_x);
QH2_x = x(iQH2_x);
PYR_x = x(iPYR_x);
OAA_x = x(iOAA_x);
ACCOA_x = x(iACCOA_x);
CIT_x = x(iCIT_x);
ICIT_x = x(iICIT_x);
AKG_x = x(iAKG_x);
SCOA_x = x(iSCOA_x);
%COASH_x = CoAMAT; % not used
SUC_x = x(iSUC_x);
FUM_x = x(iFUM_x);
MAL_x = x(iMAL_x);
GLU_x = x(iGLU_x);
ASP_x = x(iASP_x);
H_x = x(iH_x);
K_x = x(iK_x);
Mg_x = x(iMg_x);
CO2tot = x(iCO2tot_x);
% (ii) IM space species
Cred_i = max(0,x(iCred_i));
ATP_i = x(iATP_i);
ADP_i = x(iADP_i);
AMP_i = x(iAMP_i);
PI_i = x(iPI_i);
PYR_i = x(iPYR_i);
CIT_i = x(iCIT_i);
AKG_i = x(iAKG_i);
SUC_i = x(iSUC_i);
MAL_i = x(iMAL_i);
GLU_i = x(iGLU_i);
ASP_i = x(iASP_i);
H_i = x(iH_i);
Mg_i = x(iMg_i);
K_i = x(iK_i);
FUM_i = x(iFUM_i);
ICIT_i = x(iICIT_i);
% (iii) Cytoplasmic species
ATP_c = x(iATP_c);
ADP_c = x(iADP_c);
PI_c = x(iPI_c);
PYR_c = x(iPYR_c);
CIT_c = x(iCIT_c);
AKG_c = x(iAKG_c);
SUC_c = x(iSUC_c);
MAL_c = x(iMAL_c);
GLU_c = x(iGLU_c);
ASP_c = x(iASP_c);
H_c = x(iH_c);
Mg_c = x(iMg_c);
K_c = x(iK_c);
FUM_c = x(iFUM_c);
ICIT_c = x(iICIT_c);
AMP_c = x(iAMP_c);
%% State Variable Definitions for beta-oxidation
C16Carn_cy = x(63); % C16 AcylCarnitine cytosol
C16Carn_m = x(64); % C16 AcylCarnitine Matrix
C16CoA_m = x(65); % C16 AcylCoA Matrix
C16EnoylCoA_m = x(66); % C16 EnoylCoA Matrix
C16OHCoA_m = x(67); % C16 HydroxoxyacylCoA Matrix
C16KetoCoA_m = x(68); % C16 KetoacylCoA Matrix
C14Carn_cy = x(69); % C14 AcylCarnitine cytosol
C14Carn_m = x(70); % C14 AcylCarnitine Matrix
C14CoA_m = x(71); % C14 AcylCoA Matrix
C14EnoylCoA_m = x(72); % C14 EnoylCoA Matrix
C14OHCoA_m = x(73); % C14 HydroxoxyacylCoA Matrix
C14KetoCoA_m = x(74);
C12Carn_cy = x(75);
C12Carn_m = x(76);
C12CoA_m = x(77);
C12EnoylCoA_m = x(78);
C12OHCoA_m = x(79);
C12KetoCoA_m = x(80);
C10Carn_cy = x(81);
C10Carn_m = x(82);
C10CoA_m = x(83);
C10EnoylCoA_m = x(84);
C10OHCoA_m = x(85);
C10KetoCoA_m = x(86);
C8Carn_cy = x(87);
C8Carn_m = x(88);
C8CoA_m = x(89);
C8EnoylCoA_m = x(90);
C8OHCoA_m = x(91);
C8KetoCoA_m = x(92);
C6Carn_cy = x(93);
C6Carn_m = x(94);
C6CoA_m = x(95);
C6EnoylCoA_m = x(96);
C6OHCoA_m = x(97);
C6KetoCoA_m = x(98);
C4Carn_cy = x(99);
C4Carn_m = x(100);
C4CoA_m = x(101);
C4EnoylCoA_m = x(102);
C4OHCoA_m = x(103);
C4KetoCoA_m = x(104);
% x(105) not used
FADH_m = x(106);
% x(107) not used
% x(108) not used
C16AcylCoACYT = x(109);
% (iv) Other concentrations computed from the state variables:
NAD_x = NADtot - NADH_x;
COQ_x = Qtot - QH2_x;
Cox_i = Ctot - Cred_i;
const_species_CoAMATt=param(45);
CoAMAT=const_species_CoAMATt-(C16CoA_m+C16EnoylCoA_m+C16OHCoA_m+...
C16KetoCoA_m+C14CoA_m+C14EnoylCoA_m+C14OHCoA_m+C14KetoCoA_m+C12CoA_m+...
C12EnoylCoA_m+C12OHCoA_m+C12KetoCoA_m+C10CoA_m+C10EnoylCoA_m+C10OHCoA_m+...
C10KetoCoA_m+C8CoA_m+C8EnoylCoA_m+C8OHCoA_m+C8KetoCoA_m+C6CoA_m+C6EnoylCoA_m+...
C6OHCoA_m+C6KetoCoA_m+C4CoA_m+C4EnoylCoA_m+C4OHCoA_m+C4KetoCoA_m+ACCOA_x+SCOA_x);
% (v) set the H+, Mg2+, and K+ are permeable for outer mito membrane
H_i = H_c;
Mg_i = Mg_c;
K_i = K_c;
% Oxygen concentrations:
CfO2 = a_3*PO2;
%% Loading thermodynamic data (deltG, pK, etc.)
% T = 298.15K (25 C) I = 0.17 M
% standard Gibbs free energy of formation of reference species, (kJ/mol)
% without temperature correction on dGf
dGf1(1:N_reactant) = 0;
dGf1(iH2O) = -235.74; % H2O
dGf1(iO2) = 16.40; % O2(aq)
dGf1(iNADH) = 39.31; % NADH
dGf1(iNAD) = 18.10; % NAD+
dGf1(iQH2) = -23.30; % QH2
dGf1(iCOQ) = 65.17; % Q
dGf1(iATP) = -2771.00; % ATP4-
dGf1(iADP) = -1903.96; % ADP3-
dGf1(iAMP) = -1034.66; % AMP2-
dGf1(iGTP) = dGf1(iATP);
dGf1(iGDP) = dGf1(iADP);
dGf1(iCred) = -27.41; % CytoC(red)2+
dGf1(iCox) = -6.52; % CytoC(ox)3+
dGf1(iPI) = -1098.27; % HPO42-
dGf1(iPCr) = 0; % PCr2-
dGf1(iCr) = -252.68; % HCr
dGf1(iFADH2) = -67.60; % FADH2-enz
dGf1(iFAD) = 19.55; % FAD-enz
dGf1(iCOASH) = -0.72; % CoAS-
dGf1(iACCOA) = -178.19; % AcCoA
dGf1(iOAA) = -794.74; % OAA2-
dGf1(iCIT) = -1165.59; % CIT3-
dGf1(iICIT) = -1158.94; % ICIT3-
dGf1(iAKG) = -793.41; % AKG2-
dGf1(iSCOA) = -507.55; % SCoA-
dGf1(iSUC) = -690.44; % SUC2-
dGf1(iFUM) = -603.32; % FUM2-
dGf1(iMAL) = -842.66; % MAL2-
dGf1(iASP) = -692.26; % ASP-
dGf1(iGLU) = -692.40; % GLU- (L-glutamate)
dGf1(iCO2tot) = -530.71; % CO2tot
dGf1(iPYR) = -470.82; % PYR2-
dGf1(iGLC) = -907.21; % Glucose
dGf1(iG6P) = -1758.87; % Glucose-6-phosphate
% K values for reference species
% pK_KATP is corrected to be 1.013, 08/26/08
% pK_KADP is corrected to be 0.882, 08/26/08
% pK_KAMP is corrected to be 0.6215, 08/26/08
% pK_MgOAA is corrected to be 0.8629, 08/26/08
% pK_KSUC is corrected to be 0.3525, 08/26/08
Kh(1:N_reactant) = inf; Km(1:N_reactant) = inf; Kk(1:N_reactant) = inf;
Kh(iATP) = 10^(-6.59); Km(iATP) = 10^(-3.82); Kk(iATP) = 10^(-1.013);
Kh(iADP) = 10^(-6.42); Km(iADP) = 10^(-2.79); Kk(iADP) = 10^(-0.882);
Kh(iAMP) = 10^(-6.22); Km(iAMP) = 10^(-1.86); Kk(iAMP) = 10^(-0.6215);
Kh(iGTP) = Kh(iATP); Km(iGTP) = Km(iATP); Kk(iGTP) = Kk(iATP);
Kh(iGDP) = Kh(iADP); Km(iGDP) = Km(iADP); Kk(iGDP) = Kk(iADP);
Kh(iPI) = 10^(-6.71); Km(iPI) = 10^(-1.69); Kk(iPI) = 10^(+0.0074);
Kh(iCOASH) = 10^(-8.13);
Km(iOAA) = 10^(-0.8629);
Kh(iCIT) = 10^(-5.63); Km(iCIT) = 10^(-3.37); Kk(iCIT) = 10^(-0.339);
Kh(iICIT) = 10^(-5.64); Km(iICIT) = 10^(-2.46);
Kh(iSCOA) = 10^(-3.96);
Kh(iSUC) = 10^(-5.13); Km(iSUC) = 10^(-1.17); Kk(iSUC) = 10^(-0.3525);
Kh(iFUM) = 10^(-4.10);
Kh(iMAL) = 10^(-4.75); Km(iMAL) = 10^(-1.55); Kk(iMAL) = 10^(+0.107);
Kh(iCO2tot) = 10^(-9.82);
Km(iPYR) = 10^(-1.02);
Kh(iG6P) = 10^(-5.91);
% Kh(iGLU) = 10^(-4.25); % from Nelson & Cox, "Lehninger's Princinples of Biochemistry", p78
Kh(iGLU) = 10^(-4.06); % 37 C, I = 0.15
Km(iGLU) = 10^(-1.82);
% Kh(iASP) = 10^(-3.65); % from Nelson & Cox, "Lehninger's Princinples of Biochemistry", p78
Kh(iASP) = 10^(-3.65); % 37 C, I = 0.15
Km(iASP) = 10^(-2.32);
% compute binding polynomials for reactants
P_x(1:N_reactant) = 1; P_c(1:N_reactant) = 1; P_i(1:N_reactant) =1;
P_x(iATP) = 1 + H_x/Kh(iATP) + Mg_x/Km(iATP) + K_x/Kk(iATP);
P_c(iATP) = 1 + H_c/Kh(iATP) + Mg_c/Km(iATP) + K_c/Kk(iATP);
P_i(iATP) = 1 + H_i/Kh(iATP) + Mg_i/Km(iATP) + K_i/Kk(iATP);
P_x(iADP) = 1 + H_x/Kh(iADP) + Mg_x/Km(iADP) + K_x/Kk(iADP);
P_c(iADP) = 1 + H_c/Kh(iADP) + Mg_c/Km(iADP) + K_c/Kk(iADP);
P_i(iADP) = 1 + H_i/Kh(iADP) + Mg_i/Km(iADP) + K_i/Kk(iADP);
P_x(iAMP) = 1 + H_x/Kh(iAMP) + Mg_x/Km(iAMP) + K_x/Kk(iAMP);
P_c(iAMP) = 1 + H_c/Kh(iAMP) + Mg_c/Km(iAMP) + K_c/Kk(iAMP);
P_i(iAMP) = 1 + H_i/Kh(iAMP) + Mg_i/Km(iAMP) + K_i/Kk(iAMP);
P_x(iGTP) = P_x(iATP);
P_c(iGTP) = P_c(iATP);
P_i(iGTP) = P_i(iATP);
P_x(iGDP) = P_x(iADP);
P_c(iGDP) = P_c(iADP);
P_i(iGDP) = P_i(iADP);
P_x(iPI) = 1 + H_x/Kh(iPI) + Mg_x/Km(iPI) + K_x/Kk(iPI); % add K-bound item, 06/10/08
P_c(iPI) = 1 + H_c/Kh(iPI) + Mg_c/Km(iPI) + K_c/Kk(iPI); % add K-bound item, 06/10/08
P_i(iPI) = 1 + H_i/Kh(iPI) + Mg_i/Km(iPI) + K_i/Kk(iPI); % add K-bound item, 06/10/08
P_x(iCOASH) = 1 + H_x/Kh(iCOASH);
P_i(iCOASH) = 1 + H_i/Kh(iCOASH);
P_c(iCOASH) = 1 + H_c/Kh(iCOASH);
P_x(iOAA) = 1 + Mg_x/Km(iOAA);
P_i(iOAA) = 1 + Mg_i/Km(iOAA);
P_c(iOAA) = 1 + Mg_c/Km(iOAA);
P_x(iCIT) = 1 + H_x/Kh(iCIT) + Mg_x/Km(iCIT) + K_x/Kk(iCIT);
P_i(iCIT) = 1 + H_i/Kh(iCIT) + Mg_i/Km(iCIT) + K_i/Kk(iCIT);
P_c(iCIT) = 1 + H_c/Kh(iCIT) + Mg_c/Km(iCIT) + K_c/Kk(iCIT);
P_x(iICIT) = 1 + H_x/Kh(iICIT) + Mg_x/Km(iICIT);
P_i(iICIT) = 1 + H_i/Kh(iICIT) + Mg_i/Km(iICIT);
P_c(iICIT) = 1 + H_c/Kh(iICIT) + Mg_c/Km(iICIT);
P_x(iSCOA) = 1 + H_x/Kh(iSCOA);
P_i(iSCOA) = 1 + H_i/Kh(iSCOA);
P_c(iSCOA) = 1 + H_c/Kh(iSCOA);
P_x(iSUC) = 1 + H_x/Kh(iSUC) + Mg_x/Km(iSUC) + K_x/Kk(iSUC);
P_i(iSUC) = 1 + H_i/Kh(iSUC) + Mg_i/Km(iSUC) + K_i/Kk(iSUC);
P_c(iSUC) = 1 + H_c/Kh(iSUC) + Mg_c/Km(iSUC) + K_c/Kk(iSUC);
P_x(iFUM) = 1 + H_x/Kh(iFUM);
P_i(iFUM) = 1 + H_i/Kh(iFUM);
P_c(iFUM) = 1 + H_c/Kh(iFUM);
P_x(iMAL) = 1 + H_x/Kh(iMAL) + Mg_x/Km(iMAL) + K_x/Kk(iMAL);
P_i(iMAL) = 1 + H_i/Kh(iMAL) + Mg_i/Km(iMAL) + K_i/Kk(iMAL);
P_c(iMAL) = 1 + H_c/Kh(iMAL) + Mg_c/Km(iMAL) + K_c/Kk(iMAL);
P_x(iCO2tot) = 1 + H_x/Kh(iCO2tot);
P_i(iCO2tot) = 1 + H_i/Kh(iCO2tot);
P_c(iCO2tot) = 1 + H_c/Kh(iCO2tot);
P_x(iPYR) = 1 + Mg_x/Km(iPYR);
P_i(iPYR) = 1 + Mg_i/Km(iPYR);
P_c(iPYR) = 1 + Mg_c/Km(iPYR);
P_x(iG6P) = 1 + H_x/Kh(iG6P);
P_i(iG6P) = 1 + H_i/Kh(iG6P);
P_c(iG6P) = 1 + H_c/Kh(iG6P);
P_x(iGLU) = 1 + H_x/Kh(iGLU) + Mg_x/Km(iGLU); % correct Mg-bound item, 06/10/08
P_i(iGLU) = 1 + H_i/Kh(iGLU) + Mg_i/Km(iGLU); % correct Mg-bound item, 06/10/08
P_c(iGLU) = 1 + H_c/Kh(iGLU) + Mg_c/Km(iGLU); % correct Mg-bound item, 06/10/08
P_x(iASP) = 1 + H_x/Kh(iASP) + Mg_x/Km(iASP); % correct Mg-bound item, 06/10/08
P_i(iASP) = 1 + H_i/Kh(iASP) + Mg_i/Km(iASP); % correct Mg-bound item, 06/10/08
P_c(iASP) = 1 + H_c/Kh(iASP) + Mg_c/Km(iASP); % correct Mg-bound item, 06/10/08
%% I. Flux expresssions in the TCA cycle
% -------------------------------
% 1. Pyruvate dehydrogenase
% PYR + COASH + NAD (+H2O) = CO2tot + SCOA + NADH
% A - PYR; B - COASH; C - NAD; P - CO2tot; Q - SCOA; R - NADH;
% load concentrations of reactants and products
A = PYR_x;
B = CoAMAT;
C = NAD_x;
P = CO2tot;
Q = ACCOA_x;
R = NADH_x;
% dG and Keq vlaues
dGr_pdho = dGf1(iCO2tot) + dGf1(iACCOA) + dGf1(iNADH) ...
- dGf1(iPYR) - dGf1(iCOASH) - dGf1(iNAD) - dGf1(iH2O);
Keq_pdho = exp(-dGr_pdho/RT);
% Keq_pdh = Keq_pdho*(1/H_x);
Keq_pdh = Keq_pdho*(1/H_x)*(P_x(iCO2tot)*P_x(iACCOA)*P_x(iNADH)) ...
/(P_x(iPYR)*P_x(iCOASH)*P_x(iNAD));
% Km and Ki values (Molar)
KmA = 38.3e-6;
KmB = 9.9e-6;
KmC = 60.7e-6;
KiACCOA = 40.2e-6;
KiNADH = 40.0e-6;
% Inhibition Constants
ai1 = 1 + ACCOA_x/KiACCOA;
ai2 = 1 + NADH_x/KiNADH;
% get free NADH
Kn_NADH=0.3e-3; % NADH binding dissociation coefficient
Xcp0_NADH=3.5e-3; % NADH binding capacity
NADH_m=(NADH_x-Kn_NADH-Xcp0_NADH+sqrt((NADH_x-Kn_NADH-Xcp0_NADH).^2+4*Kn_NADH.*NADH_x))/2; %Free NADH for beta-oxidation
% Vm values
Vmf = Vmax(ipdh);
%Phosphorylation and dephosphorylation of PDH
[J_pdh]=PDHphosdephos(ACCOA_x,ATP_x,ADP_x,NADH_x,CoAMAT,NAD_x,PYR_x,CO2tot,Vmf,Keq_pdh,ai1,ai2,ref_pyr,Varstruc);
%total reaction flux
% if (A > MinCon) && (B > MinCon) && (C > MinCon)
% J_pdh = Vmf*(A*B*C-P*Q*R/Keq_pdh)/ (KmC*ai2*A*B + KmB*ai1*A*C + KmA*B*C + A*B*C);
% else
% J_pdh = 0;
% end
% -------------------------------
% 2. Citrate synthetase
% OAA + ACCOA (+H2O) = COASH + CIT
% A - OAA; B - ACCOA; P - COASH; Q - CIT;
% load concentrations of reactants and products
A = OAA_x;
B = ACCOA_x;
P = CoAMAT;
Q = CIT_x;
% dG and Keq values
dGr_citso = dGf1(iCOASH) + dGf1(iCIT) - dGf1(iACCOA) - dGf1(iOAA) - dGf1(iH2O);
Keq_citso = exp(-dGr_citso/RT);
% Keq_cits = Keq_citso*(1/f^2);
Keq_cits = Keq_citso*(1/H_x^2)*(P_x(iCOASH)*P_x(iCIT)) ...
/(P_x(iACCOA)*P_x(iOAA));
% Km and Ki values (Molar)
KmA = 4e-6; %Original value 4e-6 (Kohn) Alternative value 2 or 1.6 uM
KmB = 14e-6; % originial value 14 uM (Kohn) Alternative value 7, 16 or 8-10
Kia = 3.33e-6; % no alternative values
KiCIT = 1600e-6; %no alternative values
KiATP = 900e-6; % 550, or 950 uM
KiADP = 1800e-6; % 1400 uM
KiAMP = 6000e-6; % 6700 uM
KiCOASH =67e-6; %original 67e-6; % Alternative Value 675 uM
KiSCOA = 140e-6; %130
% inhibition coefficients
uCIT_x = CIT_x * (1+H_x/Kh(iCIT))/P_x(iCIT); % unchelated
uATP_x = ATP_x * (1+H_x/Kh(iATP))/P_x(iATP); % unchelated
uADP_x = ADP_x * (1+H_x/Kh(iADP))/P_x(iADP); % unchelated
uAMP_x = AMP_x * (1+H_x/Kh(iAMP))/P_x(iAMP); % unchelated
ai1 = 1 + uCIT_x/KiCIT;
ai2 = 1 + uATP_x/KiATP + uADP_x/KiADP + uAMP_x/KiAMP ...
+ CoAMAT/KiCOASH + SCOA_x/KiSCOA;
% Vm values
Vmf = Vmax(icits);
% forward reaction flux
J_cits_f = Vmf*A*B / (Kia*KmB*ai1 + KmA*ai1*B + KmB*ai2*A + A*B);
% overall reaction flux
J_cits = J_cits_f - Vmf*(P*Q/Keq_cits) / (Kia*KmB*ai1 + KmA*ai1*B + KmB*ai2*A + A*B);
% -------------------------------
% 3. Aconitase
% CIT = ICIT
% A - CIT; P - ICIT;
% load concentrations of reactants and products
A = CIT_x;
P = ICIT_x;
% dG and Keq values
dGr_acono = dGf1(iICIT) - dGf1(iCIT);
Keq_acono = exp(-dGr_acono/RT);
% Keq_acon = Keq_acono;
Keq_acon = Keq_acono*P_x(iICIT)/P_x(iCIT);
% Km and Ki values (Molar)
KmA = 1161e-6;
KmP = 434e-6;
% Vm values
Vmf = Vmax(iacon);
Vmr = Vmf*(KmP/KmA/Keq_acon);
% forward reaction flux
J_acon_f = Vmf*Vmr*A /(KmA*Vmr+Vmr*A+Vmf/Keq_acon*P);
% total reaction flux
J_acon = J_acon_f - Vmf*Vmr*(P/Keq_acon)/(KmA*Vmr+Vmr*A+Vmf/Keq_acon*P);
% -------------------------------
% 4. Isocitrate dehydrogenase
% NAD + ICIT (+ H2O) = AKG + NADH + CO2tot
% A - NAD; B - ICIT; P - AKG; Q - NADH; R - CO2tot;
% load concentrations of reactants and products
A = NAD_x;
B = ICIT_x;
P = AKG_x;
Q = NADH_x;
R = CO2tot;
% dG and Keq values
dGr_isodo = dGf1(iAKG) + dGf1(iNADH) + dGf1(iCO2tot) ...
- dGf1(iICIT) - dGf1(iNAD) - dGf1(iH2O);
Keq_isodo = exp(-dGr_isodo/RT);
% Keq_isod = Keq_isodo*(1/H_x^2);
Keq_isod = Keq_isodo*(1/H_x^2)*(P_x(iAKG)*P_x(iNADH)*P_x(iCO2tot)) ...
/(P_x(iICIT)*P_x(iNAD));
% Km and Ki values (Molar)
KmA = 74e-6;
KmB = 183e-6;
nH = 3.0;
Kib = 23.8e-6;
Kiq = 29e-6;
KiATP = 91e-6;
KaADP = 50e-6;
% inhibition coefficients
fATP_x = ATP_x * (1+H_x/Kh(iATP))/P_x(iATP);
fADP_x = ADP_x * (1+H_x/Kh(iADP))/P_x(iADP);
ai = 1 + KaADP/fADP_x*(1+fATP_x/KiATP);
% Vm values
Vmf = Vmax(iisod);
% total reaction flux
if (A > MinCon) && (B > MinCon)
J_isod = Vmf/(1+(KmB/B)^nH*ai+KmA/A*(1+(Kib/B)^nH*ai+Q*ai/Kiq))*(1-1/Keq_isod*P*Q*R/A/B);
else
J_isod = 0;
end
% -------------------------------
% 5. alpha-Ketoglutarate dehydrogenase
% AKG + COASH + NAD (+ H2O) = CO2tot + SCOA + NADH
% A - AKG; B - COASH; C - NAD; P - CO2tot; Q - SCOA; R - NADH;
% load concentrations of reactants and products
A = AKG_x;
B = CoAMAT;
C = NAD_x;
P = CO2tot;
Q = SCOA_x;
R = NADH_x;
% dG and Keq values
dGr_akgdo = dGf1(iCO2tot) + dGf1(iSCOA) + dGf1(iNADH) ...
- dGf1(iAKG) - dGf1(iCOASH) - dGf1(iNAD) - dGf1(iH2O);
Keq_akgdo = exp(-dGr_akgdo/RT);
% Keq_akgd = Keq_akgdo*(1/H_x);
Keq_akgd = Keq_akgdo*(1/H_x)*(P_x(iCO2tot)*P_x(iSCOA)*P_x(iNADH)) ...
/(P_x(iAKG)*P_x(iCOASH)*P_x(iNAD));
% Km and Ki values (Molar)
KmA = 80e-6;
KmB = 55e-6;
KmC = 21e-6;
Kiq = 6.9e-6;
%Kir1 = 4.5e-6;
%Kir2 = 12.7e-6;
KiATP = 50e-6;
KaADP = 100e-6;
% inhibition coefficients
fATP_x = ATP_x * (1+H_x/Kh(iATP))/P_x(iATP);
fADP_x = ADP_x * (1+H_x/Kh(iADP))/P_x(iADP);
ai = 1 + KaADP/fADP_x*(1+fATP_x/KiATP);
% Vm values
Vmf = Vmax(iakgd);
% % for testing
Kir1 = param(23); %6.0105e-7
Kir2 = 1e3;
% total reaction flux
if (A > MinCon) && (B > MinCon) && (C > MinCon)
J_akgd = Vmf/(1+KmA/A*ai+KmB/B*(1+Q/Kiq)+KmC/C*(1+R/Kir1))/(1+R/Kir2)*(1-1/Keq_akgd*P*Q*R/A/B/C);
else
J_akgd = 0;
end
% -------------------------------
% 6. Succinyl-CoA synthetase
% GDP + SCOA + PI = COASH + SUC + GTP
% load concentrations of reactants and products
A = GDP_x;
B = SCOA_x;
C = PI_x;
P = CoAMAT;
Q = SUC_x;
R = GTP_x;
% dG and Keq values
dGr_scoaso = dGf1(iCOASH) + dGf1(iSUC) + dGf1(iGTP) ...
- dGf1(iGDP) - dGf1(iSCOA) - dGf1(iPI);
Keq_scoaso = exp(-dGr_scoaso/RT);
% Keq_scoas = Keq_scoaso*(1/H_x);
Keq_scoas = Keq_scoaso*(1/H_x)*(P_x(iCOASH)*P_x(iSUC)*P_x(iGTP)) ...
/(P_x(iSCOA)*P_x(iPI)*P_x(iGDP));
% Km and Ki values (Molar)
KmA = 16e-6;
KmB = 55e-6;
KmC = 660e-6;
KmP = 20e-6;
KmQ = 880e-6;
KmR = 11.1e-6;
Kia = 5.5e-6;
Kib = 100e-6;
Kic = 2000e-6;
Kip = 20e-6;
Kiq = 3000e-6;
Kir = 11.1e-6;
% Vm values
Vmf = Vmax(iscoas);
Vmr = Vmf/Keq_scoas*KmP*Kiq*Kir/(Kia*Kib*KmC);
% total reaction flux
% Correct typos in J_scoas expression (10/27/08):
% Vmf*KmQ*Kir*A*B*Q ->Vmf*KmQ*Kir*A*B*P;
% Vmf*KmA*B*C*Q*R -> Vmr*KmA*B*C*Q*R;
% Vmf*KmA*B*C*P*Q*R -> Vmr*KmA*B*C*P*Q*R
J_scoas = (Vmf*Vmr*A*B*C - Vmf*Vmr*(P*Q*R/Keq_scoas)) ...
/(Vmr*Kia*Kib*KmC+Vmr*Kib*KmC*A+Vmr*Kia*KmB*C ...
+ Vmr*KmC*A*B+Vmr*KmB*A*C+Vmr*KmA*B*C+Vmr*A*B*C ...
+ Vmf*Kir*KmQ*P/Keq_scoas+Vmf*Kiq*KmP*R/Keq_scoas+Vmf*KmR*P*Q/Keq_scoas+Vmf*KmQ*P*R/Keq_scoas...
+ Vmf*KmP*Q*R/Keq_scoas+Vmf*P*Q*R/Keq_scoas+Vmf*KmQ*Kir*A*P/Kia/Keq_scoas+Vmr*Kia*KmB*C*R/Kir...
+ Vmf*KmQ*Kir*A*B*P/Kia/Kib/Keq_scoas+Vmr*KmA*B*C*R/Kir+Vmf*KmR*A*P*Q/Kia/Keq_scoas...
+ Vmr*Kia*KmB*C*Q*R/Kiq/Kir+Vmf*Kir*KmQ*A*B*C*P/Kia/Kib/Kic/Keq_scoas+Vmf*Kip*KmR*A*B*C*Q/Kia/Kib/Kic/Keq_scoas...
+ Vmf*KmR*A*B*P*Q/Kia/Kib/Keq_scoas+Vmr*KmA*B*C*Q*R/Kiq/Kir+Vmr*KmA*Kic*B*P*Q*R/Kip/Kiq/Kir...
+ Vmr*Kia*KmB*C*P*Q*R/Kip/Kiq/Kir+Vmf*KmR*A*B*C*P*Q/Kia/Kib/Kic/Keq_scoas+Vmr*KmA*B*C*P*Q*R/Kip/Kiq/Kir);
% -------------------------------
% 7. Succinate dehydrogenase
% SUC + COQ = QH2 + FUM
% load concentrations of reactants and products
A = SUC_x;
B = COQ_x;
P = QH2_x;
Q = FUM_x;
% dG and Keq values
dGr_sdho = dGf1(iQH2) + dGf1(iFUM) - dGf1(iSUC) - dGf1(iCOQ);
Keq_sdho = exp(-dGr_sdho/RT);
% Keq_sdh = Keq_sdho;
Keq_sdh = Keq_sdho*(P_x(iFUM)*P_x(iQH2))/(P_x(iSUC)*P_x(iCOQ));
% Km and Ki values (Molar)
KmA = 467e-6;
KmB = 480e-6;
KmP = 2.45e-6;
KmQ = 1200e-6;
Kia = 120e-6;
Kiq = 1275e-6;
KiOAA = 1.5e-6;
% % from Gopher and Gutman
% KaSUC = 800e-6;
% KaFUM = 6400e-6;
% from Kohn et al.
KaSUC = 450e-6;
KaFUM = 375e-6;
% inhibition coefficients
ai = (1+OAA_x/KiOAA+SUC_x/KaSUC+FUM_x/KaFUM)/(1+SUC_x/KaSUC+FUM_x/KaFUM);
% Vm values
Vmf = Vmax(isdh);
Vmr = Vmf/Keq_sdh*(KmP*Kiq/Kia/KmB);
% total reaction flux
J_sdh = (Vmf*Vmr*A*B - Vmf*Vmr*(P*Q/Keq_sdh)) / (Vmr*Kia*KmB*ai+Vmr*KmB*A ...
+Vmr*KmA*ai*B+Vmf*KmQ*ai/Keq_sdh*P+Vmf*KmP/Keq_sdh*Q ...
+Vmr*A*B+Vmf*KmQ/Kia/Keq_sdh*A*P+Vmr*KmA/Kiq*B*Q ...
+Vmf/Keq_sdh*P*Q);
% -------------------------------
% 8. Fumarase
% FUM (+ H2O) = MAL
% load concentrations of reactants and products
A = FUM_x;
P = MAL_x;
% dG and Keq values
dGr_fumo = dGf1(iMAL) - dGf1(iFUM) - dGf1(iH2O);
Keq_fumo = exp(-dGr_fumo/RT);
% Keq_fum = Keq_fumo;
Keq_fum = Keq_fumo*P_x(iMAL)/P_x(iFUM);
% Km and Ki values (Molar)
KmA = 44.7e-6;
KmP = 197.7e-6;
% KmA = 2.34e-6;
% KmP = 8e-6;
KiCIT = 3500e-6;
KiATP = 40e-6;
KiADP = 400e-6;
KiGTP = 80e-6;
KiGDP = 330e-6;
% inhibition coefficients
fATP_x = ATP_x * (1+H_x/Kh(iATP))/P_x(iATP);
fADP_x = ADP_x * (1+H_x/Kh(iADP))/P_x(iADP);
fGTP_x = GTP_x * (1+H_x/Kh(iGTP))/P_x(iGTP);
fGDP_x = GDP_x * (1+H_x/Kh(iGDP))/P_x(iGDP);
ai = 1+CIT_x/KiCIT+fATP_x/KiATP+fADP_x/KiADP+fGTP_x/KiGTP+fGDP_x/KiGDP;
% Vm values
Vmf = Vmax(ifum);
Vmr = Vmf/Keq_fum*(KmP/KmA);
% total reaction flux
J_fum = (Vmf*Vmr*A - Vmf*Vmr*(P/Keq_fum))/(KmA*Vmr*ai+Vmr*A+Vmf/Keq_fum*P);
% -------------------------------
% 9. Malate dehydrogenase
% NAD + MAL = OAA + NADH (+ H^+)
% load concentrations of reactants and products
A = NAD_x;
B = MAL_x;
P = OAA_x;
Q = NADH_x;
% dG and Keq values
dGr_mdho = dGf1(iOAA) + dGf1(iNADH) - dGf1(iNAD) - dGf1(iMAL);
Keq_mdho = exp(-dGr_mdho/RT);
% Keq_mdh = Keq_mdho*1/H_x;
Keq_mdh = Keq_mdho*1/H_x*(P_x(iOAA)*P_x(iNADH))/(P_x(iMAL)*P_x(iNAD));
% Km and Ki values (Molar)
KmA = 90.55e-6;
KmB = 250e-6;
KmP = 6.128e-6;
KmQ = 2.58e-6;
Kia = 279e-6;
Kib = 360e-6;
Kip = 5.5e-6;
Kiq = 3.18e-6;
% % from Kohn et al.
% KiATP = 709.3e-6;
% KiADP = 383.2e-6;
% KiAMP = 793.0e-6;
% from Oza and Shore
KiATP = 183.2e-6;
KiADP = 394.4e-6;
KiAMP = 420.0e-6;
% inhibition coefficients
fATP_x = ATP_x * (1+H_x/Kh(iATP))/P_x(iATP);
fADP_x = ADP_x * (1+H_x/Kh(iADP))/P_x(iADP);
fAMP_x = AMP_x * (1+H_x/Kh(iAMP))/P_x(iAMP);
ai = 1+fATP_x/KiATP+fADP_x/KiADP+fAMP_x/KiAMP;
% Vm values
Vmf = Vmax(imdh);
Vmr = Vmf/Keq_mdh*(Kiq*KmP/Kia/KmB);