forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CAM-resnet.py
executable file
·173 lines (143 loc) · 6.03 KB
/
CAM-resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# File: CAM-resnet.py
import cv2
import sys
import argparse
import numpy as np
import os
import multiprocessing
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils import optimizer, gradproc
from tensorpack.tfutils.symbolic_functions import *
from tensorpack.tfutils.summary import *
from tensorpack.utils.gpu import get_nr_gpu
from tensorpack.utils import viz
from imagenet_utils import (
fbresnet_augmentor, image_preprocess, compute_loss_and_error)
from resnet_model import (
preresnet_basicblock, preresnet_group)
TOTAL_BATCH_SIZE = 256
INPUT_SHAPE = 224
DEPTH = None
class Model(ModelDesc):
def inputs(self):
return [tf.placeholder(tf.uint8, [None, INPUT_SHAPE, INPUT_SHAPE, 3], 'input'),
tf.placeholder(tf.int32, [None], 'label')]
def build_graph(self, image, label):
image = image_preprocess(image, bgr=True)
image = tf.transpose(image, [0, 3, 1, 2])
cfg = {
18: ([2, 2, 2, 2], preresnet_basicblock),
34: ([3, 4, 6, 3], preresnet_basicblock),
}
defs, block_func = cfg[DEPTH]
with argscope(Conv2D, use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')), \
argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm], data_format='channels_first'):
convmaps = (LinearWrap(image)
.Conv2D('conv0', 64, 7, strides=2, activation=BNReLU)
.MaxPooling('pool0', 3, strides=2, padding='SAME')
.apply(preresnet_group, 'group0', block_func, 64, defs[0], 1)
.apply(preresnet_group, 'group1', block_func, 128, defs[1], 2)
.apply(preresnet_group, 'group2', block_func, 256, defs[2], 2)
.apply(preresnet_group, 'group3new', block_func, 512, defs[3], 1)())
print(convmaps)
logits = (LinearWrap(convmaps)
.GlobalAvgPooling('gap')
.FullyConnected('linearnew', 1000)())
loss = compute_loss_and_error(logits, label)
wd_cost = regularize_cost('.*/W', l2_regularizer(1e-4), name='l2_regularize_loss')
add_moving_summary(loss, wd_cost)
return tf.add_n([loss, wd_cost], name='cost')
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False)
opt = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
gradprocs = [gradproc.ScaleGradient(
[('conv0.*', 0.1), ('group[0-2].*', 0.1)])]
return optimizer.apply_grad_processors(opt, gradprocs)
def get_data(train_or_test):
# completely copied from imagenet-resnet.py example
isTrain = train_or_test == 'train'
datadir = args.data
ds = dataset.ILSVRC12(datadir, train_or_test, shuffle=isTrain)
augmentors = fbresnet_augmentor(isTrain)
augmentors.append(imgaug.ToUint8())
ds = AugmentImageComponent(ds, augmentors, copy=False)
if isTrain:
ds = PrefetchDataZMQ(ds, min(25, multiprocessing.cpu_count()))
ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
return ds
def get_config():
dataset_train = get_data('train')
dataset_val = get_data('val')
return TrainConfig(
model=Model(),
dataflow=dataset_train,
callbacks=[
ModelSaver(),
PeriodicTrigger(InferenceRunner(dataset_val, [
ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')]),
every_k_epochs=2),
ScheduledHyperParamSetter('learning_rate',
[(30, 1e-2), (55, 1e-3), (75, 1e-4), (95, 1e-5)]),
],
steps_per_epoch=5000,
max_epoch=105,
)
def viz_cam(model_file, data_dir):
ds = get_data('val')
pred_config = PredictConfig(
model=Model(),
session_init=get_model_loader(model_file),
input_names=['input', 'label'],
output_names=['wrong-top1', 'group3new/bnlast/Relu', 'linearnew/W'],
return_input=True
)
meta = dataset.ILSVRCMeta().get_synset_words_1000()
pred = SimpleDatasetPredictor(pred_config, ds)
cnt = 0
for inp, outp in pred.get_result():
images, labels = inp
wrongs, convmaps, W = outp
batch = wrongs.shape[0]
for i in range(batch):
if wrongs[i]:
continue
weight = W[:, [labels[i]]].T # 512x1
convmap = convmaps[i, :, :, :] # 512xhxw
mergedmap = np.matmul(weight, convmap.reshape((512, -1))).reshape(14, 14)
mergedmap = cv2.resize(mergedmap, (224, 224))
heatmap = viz.intensity_to_rgb(mergedmap, normalize=True)
blend = images[i] * 0.5 + heatmap * 0.5
concat = np.concatenate((images[i], heatmap, blend), axis=1)
classname = meta[labels[i]].split(',')[0]
cv2.imwrite('cam{}-{}.jpg'.format(cnt, classname), concat)
cnt += 1
if cnt == 500:
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--depth', type=int, default=18)
parser.add_argument('--load', help='load model')
parser.add_argument('--cam', action='store_true')
args = parser.parse_args()
DEPTH = args.depth
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
nr_gpu = get_nr_gpu()
BATCH_SIZE = TOTAL_BATCH_SIZE // nr_gpu
if args.cam:
BATCH_SIZE = 128 # something that can run on one gpu
viz_cam(args.load, args.data)
sys.exit()
logger.auto_set_dir()
config = get_config()
if args.load:
config.session_init = get_model_loader(args.load)
launch_train_with_config(config, SyncMultiGPUTrainerParameterServer(nr_gpu))