We provide a script run.sh
to ease your effort of running our code. Here, we first list the flags of this script and then give some examples.
--gpu
: Which GPU(s) to use.--batch
: Batch size of the pose estimation network for each GPU card.--indir
: Directory of the input images. All the images in the directory will be processed. Input dir should be RELATIVE PATH to AlphaPose directory.--list
: A text file list for the input images, each line is the ASOLUTE PATH to the image. Not co-appear with--indir
--video
: Read video and process the video frame by frame.--outdir
: Output directory to store the human detection and pose estimation results.--mode
: fast/normal/accurate. We recommend using the mode 'normal'. Their differences are listed below.
MODE | multi-scale human detection | 4 crop pose estimation | accuracy | speed |
---|---|---|---|---|
fast | no | no | 70.6 | 0.9x |
normal | yes | no | 71.6 | 1x |
accurate | yes | yes | 72.3 | 4.9x |
--vis
: If turned-on, it will visualize the results and save them as images. If the input is video, it will save the output as video (but without audio).--sep
: If turned on, it will save the json file for each image/frame of the input. Default is false.--dataset
: Follow the keypoints definition as COCO or MPII dataset. Default is 'MPII', Alternative option is 'COCO'.--format
: The format of the saved results. By default, it will save the output in COCO-like format. An alternative option is 'cmu', which saves the results in the format of CMU-Pose. For more details, see format.md
- Run AlphaPose for all images in a folder and display the results:
./run.sh --indir examples/demo/ --outdir examples/results/ --vis
- Run AlphaPose for images on a list and save the results in COCO dataset's keypoints order:
./run.sh --list examples/img-list.txt --outdir examples/results/ --dataset COCO
- Run AlphaPose for a video, save the results in CMU-Pose's format and display the results:
./run.sh --video examples/input.mp4 --outdir examples/results/ --vis --format cmu
- Run AlphaPose for all images in 'fast' mode and save the result for each image seperately:
./run.sh --indir examples/demo/ --outdir examples/results/ --mode fast --sep
- Speed up AlphaPose by using multi-gpu and larger batch size. Assumes that you have 2 GPU cards, each card has a memory of 8GB.:
./run.sh --indir examples/demo/ --outdir examples/results/ --gpu 0,1 --batch 6