-
Notifications
You must be signed in to change notification settings - Fork 0
/
float_gradient.t
278 lines (257 loc) · 5.83 KB
/
float_gradient.t
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// Copyright 2019 The Gradient Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package {{.Package}}
import (
//"math"
"math/big"
"github.com/ALTree/bigfloat"
)
type (
// V is a value
V struct {
X big.Float // the value
D big.Float // the derivative
}
// Continuation is a continuation
Continuation func(a *V) bool
// Meta is a function that takes a continuation and return a continuation
Meta func(k Continuation) Continuation
// Unary is a unary function
Unary func(k Continuation, a *V) bool
// Binary is a binary function
Binary func(k Continuation, a, b *V) bool
)
// Panic marks a place we should never get to
func Panic(a *V) bool {
panic("should not be here")
return false
}
// Meta returns a meta for the value
func (a *V) Meta() Meta {
return func(k Continuation) Continuation {
k(a)
return Panic
}
}
// Context is a function context
type Context struct {
Precision uint
}
// Add adds two numbers
func (context *Context) Add(k Continuation, a, b *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Add(&a.X, &b.X)
if k(&c) {
return true
}
a.D.Add(&a.D, &c.D)
b.D.Add(&b.D, &c.D)
return false
}
// Sub subtracts two numbers
func (context *Context) Sub(k Continuation, a, b *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Sub(&a.X, &b.X)
if k(&c) {
return true
}
a.D.Sub(&a.D, &c.D)
b.D.Sub(&b.D, &c.D)
return false
}
// Mul multiplies two numbers
func (context *Context) Mul(k Continuation, a, b *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Mul(&a.X, &b.X)
if k(&c) {
return true
}
d := big.Float{}
d.SetPrec(context.Precision)
d.Mul(&b.X, &c.D)
a.D.Add(&a.D, &d)
c.D.Mul(&a.X, &c.D)
b.D.Add(&b.D, &c.D)
return false
}
// Div divides two numbers
func (context *Context) Div(k Continuation, a, b *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Quo(&a.X, &b.X)
if k(&c) {
return true
}
a.D.Add(&a.D, c.D.Quo(&c.D, &b.X))
c.D.Mul(&c.D, &a.X)
d := big.Float{}
d.SetPrec(context.Precision)
d.Mul(&b.X, &b.X)
c.D.Quo(&c.D, &d)
b.D.Sub(&b.D, &c.D)
return false
}
// Sin the sine of a number
func (context *Context) Sin(k Continuation, a *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X = *bigfloat.Sin(&a.X)
if k(&c) {
return true
}
d := bigfloat.Cos(&a.X)
d.Mul(&c.D, d)
a.D.Add(&a.D, d)
return false
}
// Cos the cosine of a number
func (context *Context) Cos(k Continuation, a *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X = *bigfloat.Cos(&a.X)
if k(&c) {
return true
}
d := bigfloat.Sin(&a.X)
d.Mul(&c.D, d)
a.D.Sub(&a.D, d)
return false
}
// Exp the base e exponential
func (context *Context) Exp(k Continuation, a *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X = *bigfloat.Exp(&a.X)
if k(&c) {
return true
}
c.D.Mul(&c.D, &c.X)
a.D.Add(&a.D, &c.D)
return false
}
// Log the natural logarithm
func (context *Context) Log(k Continuation, a *V) bool {
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X = *bigfloat.Log(&a.X)
if k(&c) {
return true
}
c.D.Quo(&c.D, &a.X)
a.D.Add(&a.D, &c.D)
return false
}
// Sigmoid the sigmoid of a number
func (context *Context) Sigmoid(k Continuation, a *V) bool {
i := bigfloat.Exp(&a.X)
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Set(i)
c.X.Add(&c.X, big.NewFloat(1).SetPrec(context.Precision))
c.X.Quo(i, &c.X)
if k(&c) {
return true
}
d := big.NewFloat(1).SetPrec(context.Precision)
d.Sub(d, &c.X)
d.Mul(d, &c.X)
d.Mul(d, &c.D)
a.D.Add(&a.D, d)
return false
}
// TanH the hyperbolic tangent of a number
func (context *Context) TanH(k Continuation, a *V) bool {
aa := big.NewFloat(0).SetPrec(context.Precision)
aa.Set(&a.X)
aa.Mul(aa, big.NewFloat(-1).SetPrec(context.Precision))
i, j := bigfloat.Exp(&a.X), bigfloat.Exp(aa)
x, y := big.NewFloat(0).SetPrec(context.Precision), big.NewFloat(0).SetPrec(context.Precision)
x.Sub(i, j)
y.Add(i, j)
c := V{}
c.X.SetPrec(context.Precision)
c.D.SetPrec(context.Precision)
c.X.Quo(x, y)
if k(&c) {
return true
}
z := big.NewFloat(0).SetPrec(context.Precision)
z.Mul(&c.X, &c.X)
z.Sub(big.NewFloat(1).SetPrec(context.Precision), z)
z.Mul(z, &c.D)
a.D.Add(&a.D, z)
return false
}
// B converts a binary function into an operator
func B(op Binary) func(a, b Meta) Meta {
return func(a, b Meta) Meta {
return func(k Continuation) Continuation {
return a(func(a *V) bool {
derivatives := false
b(func(b *V) bool {
derivatives = op(k, a, b)
return derivatives
})
return derivatives
})
}
}
}
// U converts a unary function into an operator
func U(op Unary) func(a Meta) Meta {
return func(a Meta) Meta {
return func(k Continuation) Continuation {
return a(func(b *V) bool {
return op(k, b)
})
}
}
}
var (
// Static is the static context
Static = Context{
Precision: 64,
}
// Add adds two numbers
Add = B(Static.Add)
// Sub subtracts two numbers
Sub = B(Static.Sub)
// Mul multiplies two numbers
Mul = B(Static.Mul)
// Div divides two numbers
Div = B(Static.Div)
// Sin the sine of a number
Sin = U(Static.Sin)
// Cos the cosine of a number
Cos = U(Static.Cos)
// Exp the base e exponential
Exp = U(Static.Exp)
// Log the natural logarithm
Log = U(Static.Log)
// Sigmoid the sigmoid of a number
Sigmoid = U(Static.Sigmoid)
//TanH the hyperbolic tangent of a number
TanH = U(Static.TanH)
)
// Gradient computes the gradient
func Gradient(a Meta) (cost V) {
a(func(a *V) bool {
cost = *a
a.D.SetFloat64(1)
return false
})
return
}