forked from quantumiracle/Popular-RL-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 2
/
sdt_ppo_gae_discrete.py
164 lines (140 loc) · 5.56 KB
/
sdt_ppo_gae_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import argparse
import matplotlib.pyplot as plt
import numpy as np
from SDT.sdt_train import learner_args, device
from SDT.SDT import SDT
#Hyperparameters
learning_rate = 0.0005
gamma = 0.98
lmbda = 0.95
eps_clip = 0.1
K_epoch = 3
# T_horizon = 20
model_path = './model/sdt_ppo_discrete_lunarlandar'
class PPO(nn.Module):
def __init__(self, state_dim, action_dim):
super(PPO, self).__init__()
self.data = []
hidden_dim=128
self.fc1 = nn.Linear(state_dim,hidden_dim)
self.fc_v = nn.Linear(hidden_dim,1)
self.sdt = SDT(learner_args).to(device)
self.pi = lambda x: self.sdt.forward(x, LogProb=False)[1]
self.optimizer = optim.Adam(list(self.parameters())+list(self.sdt.parameters()), lr=learning_rate)
def v(self, x):
if isinstance(x, (np.ndarray, np.generic) ):
x = torch.tensor(x)
x = F.relu(self.fc1(x))
v = self.fc_v(x)
return v
def put_data(self, transition):
self.data.append(transition)
def make_batch(self):
s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, done_lst = [], [], [], [], [], []
for transition in self.data:
s, a, r, s_prime, prob_a, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
prob_a_lst.append([prob_a])
done_mask = 0 if done else 1
done_lst.append([done_mask])
s,a,r,s_prime,done_mask, prob_a = torch.tensor(s_lst, dtype=torch.float).to(device), torch.tensor(a_lst).to(device), \
torch.tensor(r_lst).to(device), torch.tensor(s_prime_lst, dtype=torch.float).to(device), \
torch.tensor(done_lst, dtype=torch.float).to(device), torch.tensor(prob_a_lst).to(device)
self.data = []
return s, a, r, s_prime, done_mask, prob_a
def train_net(self):
s, a, r, s_prime, done_mask, prob_a = self.make_batch()
for i in range(K_epoch):
td_target = r + gamma * self.v(s_prime) * done_mask
delta = td_target - self.v(s)
delta = delta.detach()
advantage_lst = []
advantage = 0.0
for delta_t in torch.flip(delta, [0]):
advantage = gamma * lmbda * advantage + delta_t[0]
advantage_lst.append([advantage])
advantage_lst.reverse()
advantage = torch.tensor(advantage_lst, dtype=torch.float).to(device)
pi = self.pi(s)
pi_a = pi.gather(1,a)
ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == exp(log(a)-log(b))
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * advantage
loss = -torch.min(surr1, surr2) + F.smooth_l1_loss(self.v(s) , td_target.detach())
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
def choose_action(self, s):
prob = self.pi(torch.from_numpy(s).unsqueeze(0).float().to(device)).squeeze()
m = Categorical(prob)
a = m.sample().item()
return a, prob
def load_model(self, ):
self.load_state_dict(torch.load(model_path))
def plot(rewards):
# clear_output(True)
plt.figure(figsize=(10,5))
plt.plot(rewards)
plt.savefig('sdt_ppo_discrete_lunarlandar.png')
# plt.show()
plt.clf()
plt.close()
def run(train=False, test=False):
# env = gym.make('CartPole-v1')
env = gym.make('LunarLander-v2')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n # discrete
print(state_dim, action_dim)
model = PPO(state_dim, action_dim).to(device)
print_interval = 20
if test:
model.load_model()
rewards_list=[]
for n_epi in range(10000):
s = env.reset()
done = False
reward = 0.0
step=0
while not done:
# for t in range(T_horizon):
a, prob = model.choose_action(s)
s_prime, r, done, info = env.step(a)
if test:
env.render()
model.put_data((s, a, r/100.0, s_prime, prob[a].item(), done))
# model.put_data((s, a, r, s_prime, prob[a].item(), done))
s = s_prime
reward += r
step+=1
if done:
break
if train:
model.train_net()
rewards_list.append(reward)
if train:
if n_epi%print_interval==0 and n_epi!=0:
# plot(rewards_list)
np.save('./log/sdt_ppo_discrete', rewards_list)
torch.save(model.state_dict(), model_path)
print("# of episode :{}, reward : {:.1f}, episode length: {}".format(n_epi, reward, step))
else:
print("# of episode :{}, reward : {:.1f}, episode length: {}".format(n_epi, reward, step))
env.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
if args.train:
run(train=True, test=False)
if args.test:
run(train=False, test=True)