-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
134 lines (112 loc) · 5.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import os
import time
import numpy as np
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from importlib.metadata import version
from lib.prune import prune_wanda, prune_magnitude, prune_sparsegpt, prune_ablate, check_sparsity, find_layers, prune_pruner_zero
from lib.eval import eval_ppl, eval_zero_shot
from lib.gptree import GPTree
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def get_llm(model_name, cache_dir="llm_weights"):
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
cache_dir=cache_dir,
low_cpu_mem_usage=True,
device_map="auto"
)
model.seqlen = model.config.max_position_embeddings
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='LLaMA model')
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration samples.')
parser.add_argument('--sparsity_ratio', type=float, default=0, help='Sparsity level')
parser.add_argument("--sparsity_type", type=str, choices=["unstructured", "4:8", "2:4"])
parser.add_argument("--prune_method", type=str, choices=["magnitude", "wanda", "sparsegpt",
"ablate_mag_seq", "ablate_wanda_seq", "ablate_mag_iter",
"ablate_wanda_iter", "search", "pruner-zero", "ablate_prunerzero_seq", "ablate_prunerzero_iter"])
parser.add_argument("--cache_dir", default="llm_weights", type=str )
parser.add_argument('--use_variant', action="store_true", help="whether to use the wanda variant described in the appendix")
parser.add_argument('--save', type=str, default=None, help='Path to save results.')
parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.')
# gradient_path
parser.add_argument("--gradient_path", type=str, default=None, help="Path to save the gradient.")
parser.add_argument("--json_tree", type=str, default="data/best_tree.json", help="Path to load the json tree.")
parser.add_argument("--eval_zero_shot", action="store_true")
args = parser.parse_args()
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
# Handling n:m sparsity
prune_n, prune_m = 0, 0
if args.sparsity_type != "unstructured":
assert args.sparsity_ratio == 0.5, "sparsity ratio must be 0.5 for structured N:M sparsity"
prune_n, prune_m = map(int, args.sparsity_type.split(":"))
model_name = args.model.split("/")[-1]
print(f"loading llm model {args.model}")
model = get_llm(args.model, args.cache_dir)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False)
device = torch.device("cuda:0")
if "30b" in args.model or "65b" in args.model or "70b" in args.model or "33b" in args.model: # for 30b and 65b we use device_map to load onto multiple A6000 GPUs, thus the processing here.
device = model.hf_device_map["lm_head"]
print("use device ", device)
start_time = time.time()
if args.sparsity_ratio != 0:
print("pruning starts")
if args.prune_method == "wanda":
prune_wanda(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif args.prune_method == "magnitude":
prune_magnitude(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif args.prune_method == "sparsegpt":
prune_sparsegpt(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif "ablate" in args.prune_method:
prune_ablate(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
elif "pruner-zero" in args.prune_method:
engine = GPTree.load_tree(args.json_tree)
prune_pruner_zero(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m, engine=engine)
end_time = time.time()
print("pruning time: ", end_time - start_time)
################################################################
print("*"*30)
sparsity_ratio = check_sparsity(model)
print(f"sparsity sanity check {sparsity_ratio:.4f}")
print("*"*30)
################################################################
ppl_test = eval_ppl(args, model, tokenizer, device)
print(f"wikitext perplexity {ppl_test}")
if not os.path.exists(args.save):
os.makedirs(args.save)
save_filepath = os.path.join(args.save, f"log_{args.prune_method}.txt")
with open(save_filepath, "a+") as f:
print("method\tactual_sparsity\tppl_test\tnum_samples", file=f, flush=True)
print(f"{args.prune_method}\t{sparsity_ratio:.4f}\t{ppl_test:.4f}\t{args.nsamples}", file=f, flush=True)
if args.eval_zero_shot:
accelerate=False
if "30b" in args.model or "65b" in args.model or "70b" in args.model or "7b" in args.model or "33b" in args.model:
accelerate=True
task_list = ["boolq", "rte", "hellaswag","winogrande", "arc_easy","arc_challenge", "openbookqa"]
num_shot = 0
results = eval_zero_shot(args.model, model, tokenizer, task_list, num_shot, accelerate)
print("********************************")
print("zero_shot evaluation results")
print(results)
# save all results, which is a json object
save_filepath = os.path.join(args.save, f"log_lm_eval_{args.prune_method}.json")
results_json = json.dumps(results, indent=4)
with open(save_filepath, "a+") as file:
file.write(results_json)
print(f"Results saved to {save_filepath}")
if args.save_model:
model.save_pretrained(args.save_model)
tokenizer.save_pretrained(args.save_model)
if __name__ == '__main__':
main()