-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_face.py
128 lines (104 loc) · 5.21 KB
/
test_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import face_recognition
import cv2
import numpy as np
import os
from face_api import detect_frame
image_templates_dir = "./img_templates"
def load_image_templates(image_templates_dir):
"""
从指定的模板目录获取到人脸模板照片,返回两个list
第一个list为人脸图片数据encoding的列表,第二个list为相应的人名的列表
"""
if os.path.isdir(image_templates_dir):
images = os.listdir(image_templates_dir)
face_encodings = []
face_tags = []
for image in images:
path = os.path.join(image_templates_dir, image) # 拼接每个图片的实际路径
face_image = face_recognition.load_image_file(path)
face_encoding = face_recognition.face_encodings(
face_image)[0] # 获取每个人脸图片的encoding
face_tag = os.path.splitext(image)[0] # 获取每个图片对应的用户的名字
face_encodings.append(face_encoding)
face_tags.append(face_tag)
return face_encodings, face_tags
else:
print("请输入一个有效的模板目录!")
exit(-1)
def main():
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
known_face_encodings, known_face_names = load_image_templates(
image_templates_dir)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
# if process_this_frame:
# # Find all the faces and face encodings in the current frame of video
# face_locations = face_recognition.face_locations(rgb_small_frame)
# face_encodings = face_recognition.face_encodings(
# rgb_small_frame, face_locations)
# face_names = []
# for face_encoding in face_encodings:
# # See if the face is a match for the known face(s)
# matches = face_recognition.compare_faces(
# known_face_encodings, face_encoding)
# name = "Unknown"
# # # If a match was found in known_face_encodings, just use the first one.
# # if True in matches:
# # first_match_index = matches.index(True)
# # name = known_face_names[first_match_index]
# # Or instead, use the known face with the smallest distance to the new face
# face_distances = face_recognition.face_distance(
# known_face_encodings, face_encoding)
# best_match_index = np.argmin(face_distances)
# if matches[best_match_index]:
# name = known_face_names[best_match_index]
# face_names.append(name)
if process_this_frame:
face_locations, face_names = detect_frame(
rgb_small_frame, known_face_encodings, known_face_names)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35),
(right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()