-
Notifications
You must be signed in to change notification settings - Fork 307
/
cql_offline.py
167 lines (137 loc) · 4.99 KB
/
cql_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""CQL Example.
This is a self-contained example of an offline CQL training script.
The helper functions are coded in the utils.py associated with this script.
"""
import time
import hydra
import numpy as np
import torch
import tqdm
from torchrl._utils import logger as torchrl_logger
from torchrl.envs.utils import ExplorationType, set_exploration_type
from torchrl.record.loggers import generate_exp_name, get_logger
from utils import (
dump_video,
log_metrics,
make_continuous_cql_optimizer,
make_continuous_loss,
make_cql_model,
make_environment,
make_offline_replay_buffer,
)
@hydra.main(config_path="", config_name="offline_config", version_base="1.1")
def main(cfg: "DictConfig"): # noqa: F821
# Create logger
exp_name = generate_exp_name("CQL-offline", cfg.logger.exp_name)
logger = None
if cfg.logger.backend:
logger = get_logger(
logger_type=cfg.logger.backend,
logger_name="cql_logging",
experiment_name=exp_name,
wandb_kwargs={
"mode": cfg.logger.mode,
"config": dict(cfg),
"project": cfg.logger.project_name,
"group": cfg.logger.group_name,
},
)
# Set seeds
torch.manual_seed(cfg.env.seed)
np.random.seed(cfg.env.seed)
device = cfg.optim.device
if device in ("", None):
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
device = torch.device(device)
# Create replay buffer
replay_buffer = make_offline_replay_buffer(cfg.replay_buffer)
# Create env
train_env, eval_env = make_environment(
cfg, train_num_envs=1, eval_num_envs=cfg.logger.eval_envs, logger=logger
)
# Create agent
model = make_cql_model(cfg, train_env, eval_env, device)
del train_env
# Create loss
loss_module, target_net_updater = make_continuous_loss(cfg.loss, model)
# Create Optimizer
(
policy_optim,
critic_optim,
alpha_optim,
alpha_prime_optim,
) = make_continuous_cql_optimizer(cfg, loss_module)
pbar = tqdm.tqdm(total=cfg.optim.gradient_steps)
gradient_steps = cfg.optim.gradient_steps
policy_eval_start = cfg.optim.policy_eval_start
evaluation_interval = cfg.logger.eval_iter
eval_steps = cfg.logger.eval_steps
# Training loop
start_time = time.time()
for i in range(gradient_steps):
pbar.update(1)
# sample data
data = replay_buffer.sample()
# compute loss
loss_vals = loss_module(data.clone().to(device))
# official cql implementation uses behavior cloning loss for first few updating steps as it helps for some tasks
if i >= policy_eval_start:
actor_loss = loss_vals["loss_actor"]
else:
actor_loss = loss_vals["loss_actor_bc"]
q_loss = loss_vals["loss_qvalue"]
cql_loss = loss_vals["loss_cql"]
q_loss = q_loss + cql_loss
# update model
alpha_loss = loss_vals["loss_alpha"]
alpha_prime_loss = loss_vals["loss_alpha_prime"]
alpha_optim.zero_grad()
alpha_loss.backward()
alpha_optim.step()
policy_optim.zero_grad()
actor_loss.backward()
policy_optim.step()
if alpha_prime_optim is not None:
alpha_prime_optim.zero_grad()
alpha_prime_loss.backward(retain_graph=True)
alpha_prime_optim.step()
critic_optim.zero_grad()
# TODO: we have the option to compute losses independently retain is not needed?
q_loss.backward(retain_graph=False)
critic_optim.step()
loss = actor_loss + q_loss + alpha_loss + alpha_prime_loss
# log metrics
to_log = {
"loss": loss.item(),
"loss_actor_bc": loss_vals["loss_actor_bc"].item(),
"loss_actor": loss_vals["loss_actor"].item(),
"loss_qvalue": q_loss.item(),
"loss_cql": cql_loss.item(),
"loss_alpha": alpha_loss.item(),
"loss_alpha_prime": alpha_prime_loss.item(),
}
# update qnet_target params
target_net_updater.step()
# evaluation
if i % evaluation_interval == 0:
with set_exploration_type(ExplorationType.DETERMINISTIC), torch.no_grad():
eval_td = eval_env.rollout(
max_steps=eval_steps, policy=model[0], auto_cast_to_device=True
)
eval_env.apply(dump_video)
eval_reward = eval_td["next", "reward"].sum(1).mean().item()
to_log["evaluation_reward"] = eval_reward
log_metrics(logger, to_log, i)
pbar.close()
torchrl_logger.info(f"Training time: {time.time() - start_time}")
if not eval_env.is_closed:
eval_env.close()
if __name__ == "__main__":
main()