-
Notifications
You must be signed in to change notification settings - Fork 7
/
train.py
245 lines (202 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import datetime
import torch
from sklearn.metrics import precision_recall_fscore_support as prfs
from utils.parser import get_parser_with_args
from utils.helpers import (get_loaders, get_criterion,
load_model, initialize_metrics, get_mean_metrics,
set_metrics)
import os
import logging
import json
from tensorboardX import SummaryWriter
from tqdm import tqdm
import random
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from thop import profile
from utils.utils import visualize_train_ori
"""
Initialize Parser and define arguments
"""
parser, metadata = get_parser_with_args()
opt = parser.parse_args()
"""
Initialize experiments log
"""
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler("tmp/log.txt")
handler.setLevel(logging.INFO)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logger.addHandler(handler)
logger.addHandler(console)
writer = SummaryWriter(opt.log_dir + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
"""
Set up environment: define paths, download data, and set device
"""
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
dev = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logger.info('GPU AVAILABLE? ' + str(torch.cuda.is_available()))
def seed_torch(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(seed=777)
train_loader, val_loader = get_loaders(opt)
"""
Load Model then define other aspects of the model
"""
logger.info('LOADING Model')
model = load_model(opt, dev)
input = [torch.randn((2, 3, 256, 256)).cuda()]
flops, params = profile(model, inputs=input)
print('FLOPs = ' + str(flops / 1000 ** 3) + 'G')
print('Params = ' + str(params / 1000 ** 2) + 'M')
criterion = get_criterion(opt)
optimizer = torch.optim.AdamW(model.parameters(),
lr=opt.learning_rate) # Be careful when you adjust learning rate, you can refer to the linear scaling rule
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=8, gamma=0.5)
"""
Set starting values
"""
best_metrics = {'cd_f1scores': -1, 'cd_recalls': -1, 'cd_precisions': -1}
logger.info('STARTING training')
total_step = -1
VIS = 0
if VIS:
out_path = r'outputs/SiameseCGNet_v6_with_stem_12_31'
os.makedirs(out_path, exist_ok=True)
for x in os.listdir(out_path):
os.remove(os.path.join(out_path, x))
import matplotlib.pyplot as plt
f, ax = plt.subplots(2, 4, figsize=(16, 8))
cd_loss = torch.tensor(0.)
bce_loss, dice_loss = torch.tensor(0.), torch.tensor(0.)
for epoch in range(opt.epochs):
train_metrics = initialize_metrics()
val_metrics = initialize_metrics()
"""
Begin Training
"""
model.train()
logger.info('SET model mode to train!')
batch_iter = 0
tbar = tqdm(train_loader)
for batch_img1, batch_img2, labels, name in tbar:
tbar.set_description(
"epoch {} obj/bg/loss ".format(epoch) + '{:.5f}/{:.5f}/{:.5f}'.format(
bce_loss.item(), dice_loss.item(),cd_loss.item()))
batch_iter = batch_iter + opt.batch_size
total_step += 1
# Set variables for training
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
if len(labels.shape) == 4:
labels = labels[:, :, :, 0]
# Zero the gradient
optimizer.zero_grad()
# Get model predictions, calculate loss, backprop
cd_preds = model(torch.cat([batch_img1, batch_img2],dim=0))
x_stem, x0_1, x0_2, x0_3 = cd_preds[:4]
bce_loss, dice_loss, cd_loss = criterion([cd_preds[-1]], labels)
loss = cd_loss
loss.backward()
optimizer.step()
cd_preds = cd_preds[-1]
_, cd_preds = torch.max(cd_preds, 1)
# Calculate and log other batch metrics
cd_corrects = (100 *
(cd_preds.squeeze().byte() == labels.squeeze().byte()).sum() /
(labels.size()[0] * (opt.patch_size ** 2)))
cd_train_report = prfs(labels.data.cpu().numpy().flatten(),
cd_preds.data.cpu().numpy().flatten(),
average='binary',
pos_label=1)
train_metrics = set_metrics(train_metrics,
cd_loss,
cd_corrects,
cd_train_report,
scheduler.get_last_lr())
# log the batch mean metrics
mean_train_metrics = get_mean_metrics(train_metrics)
for k, v in mean_train_metrics.items():
writer.add_scalars(str(k), {'train': v}, total_step)
if VIS and batch_iter % (opt.batch_size * 200) == 0:
visualize_train_ori(batch_img1[0], batch_img2[0], labels[0], cd_preds[0],
x_stem[0], x0_1[0], x0_2[0], x0_3[0],
os.path.join(out_path, name[0].replace('.jpg', '_{}.jpg'.format(epoch))),
ax)
# clear batch variables from memory
del batch_img1, batch_img2, labels
scheduler.step()
logger.info("EPOCH {} TRAIN METRICS".format(epoch) + str(mean_train_metrics))
"""
Begin Validation
"""
# validate once every 10 epochs
if epoch % 10 != 0 and epoch != opt.epochs - 1:
continue
model.eval()
with torch.no_grad():
for batch_img1, batch_img2, labels, name in val_loader:
# Set variables for training
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
if len(labels.shape) == 4:
labels = labels[:, :, :, 0]
# Get predictions and calculate loss
cd_preds = model(torch.cat([batch_img1, batch_img2],dim=0))
bce_loss, dice_loss, cd_loss = criterion([cd_preds[-1]], labels)
cd_preds = cd_preds[-1]
_, cd_preds = torch.max(cd_preds, 1)
# Calculate and log other batch metrics
cd_corrects = (100 *
(cd_preds.squeeze().byte() == labels.squeeze().byte()).sum() /
(labels.size()[0] * (opt.patch_size ** 2)))
cd_val_report = prfs(labels.data.cpu().numpy().flatten(),
cd_preds.data.cpu().numpy().flatten(),
average='binary',
pos_label=1)
val_metrics = set_metrics(val_metrics,
cd_loss,
cd_corrects,
cd_val_report,
scheduler.get_last_lr())
# log the batch mean metrics
mean_val_metrics = get_mean_metrics(val_metrics)
for k, v in mean_train_metrics.items():
writer.add_scalars(str(k), {'val': v}, total_step)
# clear batch variables from memory
del batch_img1, batch_img2, labels
logger.info("EPOCH {} VALIDATION METRICS".format(epoch) + str(mean_val_metrics))
"""
Store the weights of good epochs based on validation results
"""
if ((mean_val_metrics['cd_precisions'] > best_metrics['cd_precisions'])
or
(mean_val_metrics['cd_recalls'] > best_metrics['cd_recalls'])
or
(mean_val_metrics['cd_f1scores'] > best_metrics['cd_f1scores'])):
# Insert training and epoch information to metadata dictionary
logger.info('updata the model')
metadata['validation_metrics'] = mean_val_metrics
# Save model and log
if not os.path.exists('./tmp'):
os.mkdir('./tmp')
with open('./tmp/metadata_epoch_' + str(epoch) + '.json', 'w') as fout:
json.dump(metadata, fout)
torch.save(model, './tmp/checkpoint_epoch_' + str(epoch) + '.pt')
# comet.log_asset(upload_metadata_file_path)
best_metrics = mean_val_metrics
print('An epoch finished.')
writer.close() # close tensor board
print('Done!')