-
Notifications
You must be signed in to change notification settings - Fork 40
/
datasets.py
312 lines (273 loc) · 10.9 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from nltk.tokenize import RegexpTokenizer
from collections import defaultdict
from cfg.config import cfg
import torch
import torch.utils.data as data
from torch.autograd import Variable
import torchvision.transforms as transforms
import os
import sys
import numpy as np
import pandas as pd
from PIL import Image
import numpy.random as random
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
def prepare_data(data):
imgs, captions, captions_lens, class_ids, keys = data
# sort data by the length in a decreasing order
sorted_cap_lens, sorted_cap_indices = \
torch.sort(captions_lens, 0, True)
real_imgs = []
for i in range(len(imgs)):
imgs[i] = imgs[i][sorted_cap_indices]
if cfg.CUDA:
real_imgs.append(Variable(imgs[i]).cuda())
else:
real_imgs.append(Variable(imgs[i]))
captions = captions[sorted_cap_indices].squeeze()
class_ids = class_ids[sorted_cap_indices].numpy()
# sent_indices = sent_indices[sorted_cap_indices]
keys = [keys[i] for i in sorted_cap_indices.numpy()]
# print('keys', type(keys), keys[-1]) # list
if cfg.CUDA:
captions = Variable(captions).cuda()
sorted_cap_lens = Variable(sorted_cap_lens).cuda()
else:
captions = Variable(captions)
sorted_cap_lens = Variable(sorted_cap_lens)
return [real_imgs, captions, sorted_cap_lens,
class_ids, keys]
def get_imgs(img_path, imsize, bbox=None,
transform=None, normalize=None):
img = Image.open(img_path).convert('RGB')
width, height = img.size
if bbox is not None:
r = int(np.maximum(bbox[2], bbox[3]) * 0.75)
center_x = int((2 * bbox[0] + bbox[2]) / 2)
center_y = int((2 * bbox[1] + bbox[3]) / 2)
y1 = np.maximum(0, center_y - r)
y2 = np.minimum(height, center_y + r)
x1 = np.maximum(0, center_x - r)
x2 = np.minimum(width, center_x + r)
img = img.crop([x1, y1, x2, y2])
if transform is not None:
img = transform(img)
ret = []
if cfg.GAN.B_DCGAN:
ret = [normalize(img)]
else:
for i in range(cfg.TREE.BRANCH_NUM):
# print(imsize[i])
if i < (cfg.TREE.BRANCH_NUM - 1):
re_img = transforms.Scale(imsize[i])(img)
else:
re_img = img
ret.append(normalize(re_img))
return ret
class TextDataset(data.Dataset):
def __init__(self, data_dir, split='train',
base_size=64,
transform=None, target_transform=None):
self.transform = transform
self.norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
self.target_transform = target_transform
self.embeddings_num = cfg.TEXT.CAPTIONS_PER_IMAGE
self.imsize = []
for i in range(cfg.TREE.BRANCH_NUM):
self.imsize.append(base_size)
base_size = base_size * 2
self.data = []
self.data_dir = data_dir
if data_dir.find('birds') != -1:
self.bbox = self.load_bbox()
else:
self.bbox = None
split_dir = os.path.join(data_dir, split)
self.filenames, self.captions, self.ixtoword, \
self.wordtoix, self.n_words = self.load_text_data(data_dir, split)
self.class_id = self.load_class_id(split_dir, len(self.filenames))
self.number_example = len(self.filenames)
def load_bbox(self):
data_dir = self.data_dir
bbox_path = os.path.join(data_dir, 'CUB_200_2011/bounding_boxes.txt')
df_bounding_boxes = pd.read_csv(bbox_path,
delim_whitespace=True,
header=None).astype(int)
#
filepath = os.path.join(data_dir, 'CUB_200_2011/images.txt')
df_filenames = \
pd.read_csv(filepath, delim_whitespace=True, header=None)
filenames = df_filenames[1].tolist()
print('Total filenames: ', len(filenames), filenames[0])
#
filename_bbox = {img_file[:-4]: [] for img_file in filenames}
numImgs = len(filenames)
for i in xrange(0, numImgs):
# bbox = [x-left, y-top, width, height]
bbox = df_bounding_boxes.iloc[i][1:].tolist()
key = filenames[i][:-4]
filename_bbox[key] = bbox
#
return filename_bbox
def load_captions(self, data_dir, filenames):
all_captions = []
for i in range(len(filenames)):
cap_path = '%s/text/%s.txt' % (data_dir, filenames[i])
with open(cap_path, "r") as f:
captions = f.read().decode('utf8').split('\n')
cnt = 0
for cap in captions:
if len(cap) == 0:
continue
cap = cap.replace("\ufffd\ufffd", " ")
# picks out sequences of alphanumeric characters as tokens
# and drops everything else
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(cap.lower())
# print('tokens', tokens)
if len(tokens) == 0:
print('cap', cap)
continue
tokens_new = []
for t in tokens:
t = t.encode('ascii', 'ignore').decode('ascii')
if len(t) > 0:
tokens_new.append(t)
all_captions.append(tokens_new)
cnt += 1
if cnt == self.embeddings_num:
break
if cnt < self.embeddings_num:
print('ERROR: the captions for %s less than %d'
% (filenames[i], cnt))
return all_captions
def build_dictionary(self, train_captions, test_captions):
word_counts = defaultdict(float)
captions = train_captions + test_captions
for sent in captions:
for word in sent:
word_counts[word] += 1
vocab = [w for w in word_counts if word_counts[w] >= 0]
ixtoword = {}
ixtoword[0] = '<end>'
wordtoix = {}
wordtoix['<end>'] = 0
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
train_captions_new = []
for t in train_captions:
rev = []
for w in t:
if w in wordtoix:
rev.append(wordtoix[w])
# rev.append(0) # do not need '<end>' token
train_captions_new.append(rev)
test_captions_new = []
for t in test_captions:
rev = []
for w in t:
if w in wordtoix:
rev.append(wordtoix[w])
# rev.append(0) # do not need '<end>' token
test_captions_new.append(rev)
return [train_captions_new, test_captions_new,
ixtoword, wordtoix, len(ixtoword)]
def load_text_data(self, data_dir, split):
filepath = os.path.join(data_dir, 'bird_captions.pickle')
train_names = self.load_filenames(data_dir, 'train')
test_names = self.load_filenames(data_dir, 'test')
if not os.path.isfile(filepath):
train_captions = self.load_captions(data_dir, train_names)
test_captions = self.load_captions(data_dir, test_names)
train_captions, test_captions, ixtoword, wordtoix, n_words = \
self.build_dictionary(train_captions, test_captions)
with open(filepath, 'wb') as f:
pickle.dump([train_captions, test_captions,
ixtoword, wordtoix], f, protocol=2)
print('Save to: ', filepath)
else:
with open(filepath, 'rb') as f:
x = pickle.load(f)
train_captions, test_captions = x[0], x[1]
ixtoword, wordtoix = x[2], x[3]
del x
n_words = len(ixtoword)
print('Load from: ', filepath)
if split == 'train':
# a list of list: each list contains
# the indices of words in a sentence
captions = train_captions
filenames = train_names
else: # split=='test'
captions = test_captions
filenames = test_names
return filenames, captions, ixtoword, wordtoix, n_words
def load_class_id(self, data_dir, total_num):
if os.path.isfile(data_dir + '/class_info.pickle'):
with open(data_dir + '/class_info.pickle', 'rb') as f:
class_id = pickle.load(f)
else:
class_id = np.arange(total_num)
return class_id
def load_filenames(self, data_dir, split):
filepath = '%s/%s/filenames.pickle' % (data_dir, split)
if os.path.isfile(filepath):
with open(filepath, 'rb') as f:
filenames = pickle.load(f)
print('Load filenames from: %s (%d)' % (filepath, len(filenames)))
else:
filenames = []
return filenames
def get_caption(self, sent_ix):
# a list of indices for a sentence
sent_caption = np.asarray(self.captions[sent_ix]).astype('int64')
# if (sent_caption == 0).sum() > 0:
# print('ERROR: do not need END (0) token', sent_caption)
num_words = len(sent_caption)
# pad with 0s (i.e., '<end>')
x = np.zeros((cfg.TEXT.WORDS_NUM, 1), dtype='int64')
x_len = num_words
if num_words <= cfg.TEXT.WORDS_NUM:
x[:num_words, 0] = sent_caption
else:
ix = list(np.arange(num_words)) # 1, 2, 3,..., maxNum
np.random.shuffle(ix)
ix = ix[:cfg.TEXT.WORDS_NUM]
ix = np.sort(ix)
x[:, 0] = sent_caption[ix]
x_len = cfg.TEXT.WORDS_NUM
return x, x_len
def __getitem__(self, index):
#
key = self.filenames[index]
cls_id = self.class_id[index]
#
if self.bbox is not None:
bbox = self.bbox[key]
data_dir = '%s/CUB_200_2011' % self.data_dir
else:
bbox = None
data_dir = self.data_dir
#
img_name = '%s/images/%s.jpg' % (data_dir, key)
imgs = get_imgs(img_name, self.imsize,
bbox, self.transform, normalize=self.norm)
# random select a sentence
sent_ix = random.randint(0, self.embeddings_num)
new_sent_ix = index * self.embeddings_num + sent_ix
caps, cap_len = self.get_caption(new_sent_ix)
return imgs, caps, cap_len, cls_id, key
def __len__(self):
return len(self.filenames)