-
Notifications
You must be signed in to change notification settings - Fork 28
/
train.py
256 lines (224 loc) · 9.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- coding: utf-8 -*-
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import AnnotationTransform, VOCDetection, detection_collate, VOCroot, VOC_CLASSES
from data import KittiLoader, AnnotationTransform_kitti,Class_to_ind
from utils.augmentations import SSDAugmentation
from layers.modules import MultiBoxLoss
from ssd import build_ssd
from IPython import embed
from log import log
import time
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--dim', default=512, type=int, help='Size of the input image, only support 300 or 512')
parser.add_argument('-d', '--dataset', default='VOC',help='VOC or COCO dataset')
parser.add_argument('--basenet', default='vgg16_reducedfc.pth', help='pretrained base model')
parser.add_argument('--jaccard_threshold', default=0.5, type=float, help='Min Jaccard index for matching')
parser.add_argument('--batch_size', default=16, type=int, help='Batch size for training')
parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--iterations', default=120000, type=int, help='Number of training iterations')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=3e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True, type=bool, help='Print the loss at each iteration')
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--data_root', default=VOCroot, help='Location of VOC root directory')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
# train_sets = 'train'
means = (104, 117, 123) # only support voc now
if args.dataset=='VOC':
num_classes = len(VOC_CLASSES) + 1
elif args.dataset=='kitti':
num_classes = 1+1
accum_batch_size = 32
iter_size = accum_batch_size / args.batch_size
stepvalues = (60000, 80000, 100000)
start_iter = 0
if args.visdom:
import visdom
viz = visdom.Visdom()
ssd_net = build_ssd('train', args.dim, num_classes)
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.resume:
log.l.info('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
start_iter = int(agrs.resume.split('/')[-1].split('.')[0].split('_')[-1])
else:
vgg_weights = torch.load(args.save_folder + args.basenet)
log.l.info('Loading base network...')
ssd_net.vgg.load_state_dict(vgg_weights)
start_iter = 0
if args.cuda:
net = net.cuda()
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
m.bias.data.zero_()
if not args.resume:
log.l.info('Initializing weights...')
# initialize newly added layers' weights with xavier method
ssd_net.extras.apply(weights_init)
ssd_net.loc.apply(weights_init)
ssd_net.conf.apply(weights_init)
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
criterion = MultiBoxLoss(num_classes, args.dim, 0.5, True, 0, True, 3, 0.5, False, args.cuda)
def DatasetSync(dataset='VOC',split='training'):
if dataset=='VOC':
#DataRoot=os.path.join(args.data_root,'VOCdevkit')
DataRoot=args.data_root
dataset = VOCDetection(DataRoot, train_sets, SSDAugmentation(
args.dim, means), AnnotationTransform())
elif dataset=='kitti':
DataRoot=os.path.join(args.data_root,'kitti')
dataset = KittiLoader(DataRoot, split=split,img_size=(1000,300),
transforms=SSDAugmentation((1000,300),means),
target_transform=AnnotationTransform_kitti())
return dataset
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0
log.l.info('Loading Dataset...')
# dataset = VOCDetection(args.voc_root, train_sets, SSDAugmentation(
# args.dim, means), AnnotationTransform())
dataset=DatasetSync(dataset=args.dataset,split='training')
epoch_size = len(dataset) // args.batch_size
log.l.info('Training SSD on {}'.format(dataset.name))
step_index = 0
if args.visdom:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title='Current SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
epoch_lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Epoch',
ylabel='Loss',
title='Epoch SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
batch_iterator = None
data_loader = data.DataLoader(dataset, args.batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate, pin_memory=True)
lr=args.lr
for iteration in range(start_iter, args.iterations + 1):
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
if iteration in stepvalues:
step_index += 1
lr=adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * epoch,
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu() / epoch_size,
win=epoch_lot,
update='append'
)
# reset epoch loss counters
loc_loss = 0
conf_loss = 0
epoch += 1
# load train data
images, targets = next(batch_iterator)
#embed()
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda(), volatile=True) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno, volatile=True) for anno in targets]
# forward
t0 = time.time()
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
loss.backward()
optimizer.step()
t1 = time.time()
loc_loss += loss_l.data[0]
conf_loss += loss_c.data[0]
if iteration % 10 == 0:
log.l.info('''
Timer: {:.5f} sec.\t LR: {}.\t Iter: {}.\t Loss_l: {:.5f}.\t Loss_c: {:.5f}.
'''.format((t1-t0),lr,iteration,loss_l.data[0],loss_c.data[0]))
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
viz.image(images.data[random_batch_index].cpu().numpy())
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * iteration,
Y=torch.Tensor([loss_l.data[0], loss_c.data[0],
loss_l.data[0] + loss_c.data[0]]).unsqueeze(0).cpu(),
win=lot,
update='append'
)
# hacky fencepost solution for 0th epoch plot
if iteration == 0:
viz.line(
X=torch.zeros((1, 3)).cpu(),
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu(),
win=epoch_lot,
update=True
)
if iteration % 5000 == 0:
log.l.info('Saving state, iter: {}'.format(iteration))
torch.save(ssd_net.state_dict(), 'weights/ssd' + str(args.dim) + '_0712_' +
repr(iteration) + '.pth')
torch.save(ssd_net.state_dict(), args.save_folder + 'ssd_' + str(args.dim) + '.pth')
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < 6:
lr = 1e-6 + (args.lr-1e-6) * iteration / (epoch_size * 5)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()