forked from lixiang-ucas/FSODM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
214 lines (186 loc) · 6.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import print_function
import sys
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import datasets, transforms
from torch.autograd import Variable
import dataset
import random
import math
import os
from utils import *
from cfg import parse_cfg, cfg
from darknet import Darknet
import pdb
# Training settings
datacfg = sys.argv[1]
darknetcfg = parse_cfg(sys.argv[2])
learnetcfg = parse_cfg(sys.argv[3])
if len(sys.argv) == 5:
weightfile = sys.argv[4]
data_options = read_data_cfg(datacfg)
net_options = darknetcfg[0]
meta_options = learnetcfg[0]
# Configure options
cfg.config_data(data_options)
cfg.config_meta(meta_options)
cfg.config_net(net_options)
# Parameters
metadict = data_options['meta']
trainlist = data_options['train']
testlist = data_options['valid']
backupdir = data_options['backup']
gpus = data_options['gpus'] # e.g. 0,1,2,3
ngpus = len(gpus.split(','))
num_workers = int(data_options['num_workers'])
batch_size = int(net_options['batch'])
max_batches = int(net_options['max_batches'])
learning_rate = float(data_options['learning_rate'])
momentum = float(net_options['momentum'])
decay = float(net_options['decay'])
steps = [float(step) for step in data_options['steps'].split(',')]
scales = [float(scale) for scale in data_options['scales'].split(',')]
# Train parameters
use_cuda = True
seed = int(time.time())
## --------------------------------------------------------------------------
## MAIN
backupdir = cfg.backup
print('logging to ' + backupdir)
if not os.path.exists(backupdir):
os.makedirs(backupdir)
torch.manual_seed(seed)
if use_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed)
model = Darknet(darknetcfg, learnetcfg)
region_loss = model.loss
model.print_network()
if len(sys.argv) == 5:
model.load_weights(weightfile)
###################################################
### Meta-model parameters
region_loss.seen = model.seen
processed_batches = 0 if cfg.tuning else model.seen / batch_size
trainlist = dataset.build_dataset(data_options)
nsamples = len(trainlist)
init_width = model.width
init_height = model.height
init_epoch = 0 if cfg.tuning else model.seen / nsamples
max_epochs = max_batches * batch_size / nsamples + 1
max_epochs = int(math.ceil(cfg.max_epoch * 1. / cfg.repeat)) if cfg.tuning else max_epochs
print(cfg.repeat, nsamples, max_batches, batch_size)
print(num_workers)
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
if use_cuda:
if ngpus > 1:
model = torch.nn.DataParallel(model).cuda()
else:
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
def adjust_learning_rate(optimizer, processed_batches):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = learning_rate
for i in range(len(steps)):
scale = scales[i] if i < len(scales) else 1
if processed_batches >= steps[i]:
lr = lr * scale
if processed_batches == steps[i]:
break
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train(epoch):
global processed_batches
t0 = time.time()
if ngpus > 1:
cur_model = model.module
else:
cur_model = model
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(trainlist, shape=(init_width, init_height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]),
train=True,
seen=cur_model.seen,
batch_size=batch_size,
num_workers=num_workers),
batch_size=batch_size, shuffle=False, **kwargs)
metaset = dataset.MetaDataset(metafiles=metadict, train=True)
metaloader = torch.utils.data.DataLoader(
metaset,
batch_size=metaset.batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
metaloader = iter(metaloader)
lr = adjust_learning_rate(optimizer, processed_batches)
logging('epoch %d/%d, processed %d samples, lr %e' % (epoch, max_epochs, epoch * len(train_loader.dataset), lr))
model.train()
t1 = time.time()
avg_time = torch.zeros(9)
for batch_idx, (data, target) in enumerate(train_loader):
metax, mask = metaloader.next()
t2 = time.time()
adjust_learning_rate(optimizer, processed_batches)
processed_batches = processed_batches + 1
if use_cuda:
data = data.cuda()
metax = metax.cuda()
mask = mask.cuda()
# target= target.cuda()
t3 = time.time()
data, target = Variable(data), Variable(target)
metax, mask = Variable(metax), Variable(mask)
t4 = time.time()
optimizer.zero_grad()
t5 = time.time()
output = model(data, metax, mask)
t6 = time.time()
region_loss.seen = region_loss.seen + data.data.size(0)
cur_model.seen = region_loss.seen
region_loss.input_size = (data.data.size(2), data.data.size(3))
loss = region_loss(output, target)
t7 = time.time()
loss.backward()
t8 = time.time()
optimizer.step()
t9 = time.time()
if False and batch_idx > 1:
avg_time[0] = avg_time[0] + (t2 - t1)
avg_time[1] = avg_time[1] + (t3 - t2)
avg_time[2] = avg_time[2] + (t4 - t3)
avg_time[3] = avg_time[3] + (t5 - t4)
avg_time[4] = avg_time[4] + (t6 - t5)
avg_time[5] = avg_time[5] + (t7 - t6)
avg_time[6] = avg_time[6] + (t8 - t7)
avg_time[7] = avg_time[7] + (t9 - t8)
avg_time[8] = avg_time[8] + (t9 - t1)
print('-------------------------------')
print(' load data : %f' % (avg_time[0] / (batch_idx)))
print(' cpu to cuda : %f' % (avg_time[1] / (batch_idx)))
print('cuda to variable : %f' % (avg_time[2] / (batch_idx)))
print(' zero_grad : %f' % (avg_time[3] / (batch_idx)))
print(' forward feature : %f' % (avg_time[4] / (batch_idx)))
print(' forward loss : %f' % (avg_time[5] / (batch_idx)))
print(' backward : %f' % (avg_time[6] / (batch_idx)))
print(' step : %f' % (avg_time[7] / (batch_idx)))
print(' total : %f' % (avg_time[8] / (batch_idx)))
t1 = time.time()
print('')
t1 = time.time()
logging('training with %f samples/s' % (len(train_loader.dataset) / (t1 - t0)))
if (epoch + 1) % cfg.save_interval == 0:
logging('save weights to %s/%06d.weights' % (backupdir, epoch + 1))
cur_model.save_weights('%s/%06d.weights' % (backupdir, epoch + 1))
for epoch in range(init_epoch, max_epochs):
train(epoch)