diff --git a/docs/mixed_precision.md b/docs/mixed_precision.md index 1916f14ba120f..3681282055d1f 100644 --- a/docs/mixed_precision.md +++ b/docs/mixed_precision.md @@ -10,25 +10,42 @@ PLSC支持混合精度训练。使用混合精度训练可以提升训练的速 from plsc import Entry def main(): ins = Entry() - ins.set_mixed_precision(True, 1.0) + ins.set_mixed_precision(True) ins.train() if __name__ == "__main__": main() ``` 其中,`set_mixed_precision`函数介绍如下: -| API | 描述 | 参数说明 | -| :------------------- | :--------------------| :---------------------- | -| set_mixed_precision(use_fp16, loss_scaling) | 设置混合精度训练 | `use_fp16`为是否开启混合精度训练,默认为False;`loss_scaling`为初始的损失缩放值,默认为1.0| +| API | 描述 | +| --- | ---| +| set_mixed_precision| 设置混合精度训练 -- `use_fp16`:bool类型,当想要开启混合精度训练时,可将此参数设为True即可。 -- `loss_scaling`:float类型,为初始的损失缩放值,这个值有可能会影响混合精度训练的精度,建议设为默认值1.0。 +## 参数说明 +set_mixed_precision 函数提供7个参数,其中use_fp16为必选项,决定是否开启混合精度训练,其他6个参数均有默认值,具体说明如下: -为了提高混合精度训练的稳定性和精度,默认开启了动态损失缩放机制。更多关于混合精度训练的介绍可参考:[混合精度训练](https://arxiv.org/abs/1710.03740) +| 参数 | 类型 | 默认值| 说明 +| --- | --- | ---|---| +|use_fp16| bool | 无,需用户设定| 是否开启混合精度训练,设为True为开启混合精度训练 +|init_loss_scaling| float | 1.0|初始的损失缩放值,这个值有可能会影响混合精度训练的精度,建议设为默认值 +|incr_every_n_steps | int | 2000|累计迭代`incr_every_n_steps`步都没出现FP16的越界,loss_scaling则会增加`incr_ratio`倍,建议设为默认值 +|decr_every_n_nan_or_inf| int | 2|累计迭代`decr_every_n_nan_or_inf`步出现了FP16的越界,loss_scaling则会缩小为原来的`decr_ratio`倍,建议设为默认值 +|incr_ratio |float|2.0|扩大loss_scaling的倍数,建议设为默认值 +|decr_ratio| float |0.5| 缩小loss_scaling的倍数,建议设为默认值 +|use_dynamic_loss_scaling | bool | True| 是否使用动态损失缩放机制。如果开启,才会用到`incr_every_n_steps`,`decr_every_n_nan_or_inf`,`incr_ratio`,`decr_ratio`四个参数,开启会提高混合精度训练的稳定性和精度,建议设为默认值 +|amp_lists|AutoMixedPrecisionLists类|None|自动混合精度列表类,可以指定具体使用fp16计算的operators列表,建议设为默认值 + + +更多关于混合精度训练的介绍可参考: +- Paper: [MIXED PRECISION TRAINING](https://arxiv.org/abs/1710.03740) + +- Nvidia Introduction: [Training With Mixed Precision](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html) ## 训练性能 配置: Nvidia Tesla v100 GPU 单机8卡 + | 模型\速度 | FP32训练 | 混合精度训练 | 加速比 | | --- | --- | --- | --- | | ResNet50 | 2567.96 images/s | 3643.11 images/s | 1.42 | + 备注:上述模型训练使用的loss_type均为'dist_arcface'。 diff --git a/plsc/entry.py b/plsc/entry.py index 2cc606d5bb269..efddb44bc73fd 100644 --- a/plsc/entry.py +++ b/plsc/entry.py @@ -48,7 +48,7 @@ format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%d %b %Y %H:%M:%S') logger = logging.getLogger(__name__) - + class Entry(object): """ @@ -100,7 +100,6 @@ def __init__(self): self.fs_dir = None self.use_fp16 = False - self.init_loss_scaling = 1.0 self.fp16_user_dict = None self.val_targets = self.config.val_targets @@ -149,16 +148,30 @@ def set_train_batch_size(self, batch_size): self.global_train_batch_size = batch_size * self.num_trainers logger.info("Set train batch size to {}.".format(batch_size)) - def set_mixed_precision(self, use_fp16, loss_scaling): + def set_mixed_precision(self, + use_fp16, + init_loss_scaling = 1.0, + incr_every_n_steps = 2000, + decr_every_n_nan_or_inf = 2, + incr_ratio = 2.0, + decr_ratio = 0.5, + use_dynamic_loss_scaling = True, + amp_lists = None): """ Whether to use mixed precision training. """ self.use_fp16 = use_fp16 - self.init_loss_scaling = loss_scaling self.fp16_user_dict = dict() - self.fp16_user_dict['init_loss_scaling'] = self.init_loss_scaling + self.fp16_user_dict['init_loss_scaling'] = init_loss_scaling + self.fp16_user_dict['incr_every_n_steps'] = incr_every_n_steps + self.fp16_user_dict['decr_every_n_nan_or_inf'] = decr_every_n_nan_or_inf + self.fp16_user_dict['incr_ratio'] = incr_ratio + self.fp16_user_dict['decr_ratio'] = decr_ratio + self.fp16_user_dict['use_dynamic_loss_scaling'] = use_dynamic_loss_scaling + self.fp16_user_dict['amp_lists'] = amp_lists logger.info("Use mixed precision training: {}.".format(use_fp16)) - logger.info("Set init loss scaling to {}.".format(loss_scaling)) + for key in self.fp16_user_dict: + logger.info("Set init {} to {}.".format(key, self.fp16_user_dict[key])) def set_test_batch_size(self, batch_size): self.test_batch_size = batch_size @@ -168,7 +181,7 @@ def set_test_batch_size(self, batch_size): def set_hdfs_info(self, fs_name, fs_ugi, directory): """ Set the info to download from or upload to hdfs filesystems. - If the information is provided, we will download pretrained + If the information is provided, we will download pretrained model from hdfs at the begining and upload pretrained models to hdfs at the end automatically. """ @@ -281,13 +294,13 @@ def _get_optimizer(self): if not self.optimizer: bd = [step for step in self.lr_steps] start_lr = self.lr - + global_batch_size = self.global_train_batch_size train_image_num = self.train_image_num images_per_trainer = int(math.ceil( train_image_num * 1.0 / self.num_trainers)) steps_per_pass = int(math.ceil( - images_per_trainer * 1.0 / self.train_batch_size)) + images_per_trainer * 1.0 / self.train_batch_size)) logger.info("Steps per epoch: %d" % steps_per_pass) warmup_steps = steps_per_pass * self.warmup_epochs batch_denom = 1024 @@ -300,12 +313,12 @@ def _get_optimizer(self): values=lr), warmup_steps, start_lr, base_lr) else: lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr) - + optimizer = fluid.optimizer.Momentum( learning_rate=lr_val, momentum=0.9, regularization=fluid.regularizer.L2Decay(5e-4)) self.optimizer = optimizer - + if self.loss_type in ["dist_softmax", "dist_arcface"]: self.optimizer = DistributedClassificationOptimizer( self.optimizer, global_batch_size, use_fp16=self.use_fp16, @@ -313,7 +326,15 @@ def _get_optimizer(self): fp16_user_dict=self.fp16_user_dict) elif self.use_fp16: self.optimizer = fluid.contrib.mixed_precision.decorate( - optimizer=optimizer, init_loss_scaling=self.init_loss_scaling) + optimizer=optimizer, + init_loss_scaling=self.fp16_user_dict['init_loss_scaling'], + incr_every_n_steps=self.fp16_user_dict['incr_every_n_steps'], + decr_every_n_nan_or_inf=self.fp16_user_dict['decr_every_n_nan_or_inf'], + incr_ratio=self.fp16_user_dict['incr_ratio'], + decr_ratio=self.fp16_user_dict['decr_ratio'], + use_dynamic_loss_scaling=self.fp16_user_dict['use_dynamic_loss_scaling'], + amp_lists=self.fp16_user_dict['amp_lists'] + ) return self.optimizer def build_program(self, @@ -428,7 +449,7 @@ def preprocess_distributed_params(self, stdout=sys.stdout, stderr=subprocess.STDOUT) process.wait() - + for file in os.listdir(local_dir): if "dist@" in file and "@rank@" in file: file = os.path.join(local_dir, file) @@ -442,10 +463,10 @@ def preprocess_distributed_params(self, def _append_broadcast_ops(self, program): """ - Before test, we broadcast bathnorm-related parameters to all + Before test, we broadcast bathnorm-related parameters to all other trainers from trainer-0. """ - bn_vars = [var for var in program.list_vars() + bn_vars = [var for var in program.list_vars() if 'batch_norm' in var.name and var.persistable] block = program.current_block() for var in bn_vars: @@ -475,7 +496,7 @@ def load_checkpoint(self, shutil.rmtree(checkpoint_dir) os.makedirs(checkpoint_dir) - # sync all trainers to avoid loading checkpoints before + # sync all trainers to avoid loading checkpoints before # parameters are downloaded file_name = os.path.join(checkpoint_dir, '.lock') if self.trainer_id == 0: @@ -483,14 +504,14 @@ def load_checkpoint(self, with open(file_name, 'w') as f: pass time.sleep(10) - os.remove(file_name) + os.remove(file_name) else: while True: if not os.path.exists(file_name): time.sleep(1) else: break - + # Preporcess distributed parameters. file_name = os.path.join(checkpoint_dir, '.lock') distributed = self.loss_type in ["dist_softmax", "dist_arcface"] @@ -499,7 +520,7 @@ def load_checkpoint(self, with open(file_name, 'w') as f: pass time.sleep(10) - os.remove(file_name) + os.remove(file_name) elif load_for_train and distributed: # wait trainer_id (0) to complete while True: @@ -600,7 +621,7 @@ def predict(self): feeder = fluid.DataFeeder(place=place, feed_list=['image', 'label'], program=main_program) - + fetch_list = [emb.name] for data in predict_reader(): emb = exe.run(main_program, feed=feeder.feed(data), @@ -674,33 +695,33 @@ def test(self, pass_id=0): embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) embeddings[start:start+real_test_batch_size, :] = _embeddings[:, :] beg = parallel_test_steps * real_test_batch_size - + while beg < data.shape[0]: end = min(beg + self.test_batch_size, data.shape[0]) count = end - beg _data = [] for k in xrange(end - self.test_batch_size, end): _data.append((data[k], 0)) - [_embeddings] = exe.run(test_program, + [_embeddings] = exe.run(test_program, fetch_list = fetch_list, feed=feeder.feed(_data), use_program_cache=True) _embeddings = _embeddings[0:self.test_batch_size,:] embeddings[beg:end, :] = _embeddings[(self.test_batch_size-count):, :] beg = end embeddings_list.append(embeddings) - + xnorm = 0.0 xnorm_cnt = 0 for embed in embeddings_list: xnorm += np.sqrt((embed * embed).sum(axis=1)).sum(axis=0) xnorm_cnt += embed.shape[0] xnorm /= xnorm_cnt - + embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) _, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=10) acc, std = np.mean(accuracy), np.std(accuracy) - + print('[%s][%d]XNorm: %f' % (test_name_list[i], pass_id, xnorm)) print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (test_name_list[i], pass_id, acc, std)) sys.stdout.flush() @@ -712,7 +733,7 @@ def train(self): trainer_id = self.trainer_id num_trainers = self.num_trainers - + role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) strategy = DistributedStrategy() @@ -720,7 +741,7 @@ def train(self): strategy.collective_mode = "grad_allreduce" self.fleet = fleet self.strategy = strategy - + train_emb, train_loss, train_acc1, train_acc5, optimizer = \ self.build_program(True, False) if self.with_test: @@ -730,10 +751,10 @@ def train(self): self.dataset_dir, self.val_targets) test_program = self.test_program self._append_broadcast_ops(test_program) - + global_lr = optimizer._global_learning_rate( program=self.train_program) - + origin_prog = fleet._origin_program train_prog = fleet.main_program if trainer_id == 0: @@ -745,25 +766,25 @@ def train(self): program_to_code(origin_prog, fout, True) with open('test.program', 'w') as fout: program_to_code(test_program, fout, True) - + gpu_id = int(os.getenv("FLAGS_selected_gpus", 0)) place = fluid.CUDAPlace(gpu_id) exe = fluid.Executor(place) exe.run(self.startup_program) - + if self.with_test: test_feeder = fluid.DataFeeder(place=place, feed_list=['image', 'label'], program=test_program) - fetch_list_test = [test_emb.name] + fetch_list_test = [test_emb.name] real_test_batch_size = self.global_test_batch_size - + if self.checkpoint_dir: load_checkpoint = True else: load_checkpoint = False if load_checkpoint: self.load_checkpoint(executor=exe, main_program=origin_prog) - + if self.train_reader is None: train_reader = paddle.batch(reader.arc_train( self.dataset_dir, self.num_classes), @@ -773,13 +794,13 @@ def train(self): feeder = fluid.DataFeeder(place=place, feed_list=['image', 'label'], program=origin_prog) - + if self.calc_train_acc: fetch_list = [train_loss.name, global_lr.name, train_acc1.name, train_acc5.name] else: fetch_list = [train_loss.name, global_lr.name] - + local_time = 0.0 nsamples = 0 inspect_steps = 200 @@ -818,7 +839,7 @@ def train(self): local_time = 0 nsamples = 0 local_train_info = [[], [], [], []] - + train_loss = np.array(train_info[0]).mean() print("End pass {0}, train_loss {1}".format(pass_id, train_loss)) sys.stdout.flush() @@ -850,45 +871,45 @@ def train(self): embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) embeddings[start:start+real_test_batch_size, :] = _embeddings[:, :] beg = parallel_test_steps * real_test_batch_size - + while beg < data.shape[0]: end = min(beg + self.test_batch_size, data.shape[0]) count = end - beg _data = [] for k in xrange(end - self.test_batch_size, end): _data.append((data[k], 0)) - [_embeddings] = exe.run(test_program, + [_embeddings] = exe.run(test_program, fetch_list = fetch_list_test, feed=test_feeder.feed(_data), use_program_cache=True) _embeddings = _embeddings[0:self.test_batch_size,:] embeddings[beg:end, :] = _embeddings[(self.test_batch_size-count):, :] beg = end embeddings_list.append(embeddings) - + xnorm = 0.0 xnorm_cnt = 0 for embed in embeddings_list: xnorm += np.sqrt((embed * embed).sum(axis=1)).sum(axis=0) xnorm_cnt += embed.shape[0] xnorm /= xnorm_cnt - + embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) _, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=10) acc, std = np.mean(accuracy), np.std(accuracy) - + print('[%s][%d]XNorm: %f' % (test_name_list[i], pass_id, xnorm)) print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (test_name_list[i], pass_id, acc, std)) sys.stdout.flush() test_end = time.time() print("test time: {}".format(test_end - test_start)) - + #save model if self.model_save_dir: model_save_dir = os.path.join( self.model_save_dir, str(pass_id)) if not os.path.exists(model_save_dir): - # may be more than one processes trying + # may be more than one processes trying # to create the directory try: os.makedirs(model_save_dir) @@ -921,7 +942,7 @@ def save_var(var): #upload model if self.model_save_dir and self.fs_name and trainer_id == 0: self.put_files_to_hdfs(self.model_save_dir) - + if __name__ == '__main__': ins = Entry() diff --git a/plsc/models/dist_algo.py b/plsc/models/dist_algo.py index c9d0dc3fc153c..1d12b689ad20a 100644 --- a/plsc/models/dist_algo.py +++ b/plsc/models/dist_algo.py @@ -41,13 +41,13 @@ class DistributedClassificationOptimizer(Optimizer): def init_fp16_params(self, loss_type, fp16_user_dict): # set default value for fp16_params_dict fp16_params_dict = dict() - fp16_params_dict['amp_lists']= None fp16_params_dict['init_loss_scaling'] = 1.0 fp16_params_dict['incr_every_n_steps'] = 1000 fp16_params_dict['decr_every_n_nan_or_inf'] = 2 fp16_params_dict['incr_ratio'] = 2.0 fp16_params_dict['decr_ratio'] = 0.5 fp16_params_dict['use_dynamic_loss_scaling'] = True + fp16_params_dict['amp_lists']= None if fp16_user_dict is not None: # update fp16_params_dict for key in fp16_user_dict: @@ -56,8 +56,9 @@ def init_fp16_params(self, loss_type, fp16_user_dict): else: logging.warning("Can't find name '%s' in our fp16_params_dict. " "Please check your dict key. You can set fp16 params only " - "in [amp_lists, init_loss_scaling, decr_every_n_nan_or_inf, " - "incr_ratio, decr_ratio, use_dynamic_loss_scaling]." % (key)) + "in [init_loss_scaling, incr_every_n_steps, " + "decr_every_n_nan_or_inf, incr_ratio, decr_ratio, " + "use_dynamic_loss_scaling, amp_lists]" % (key)) self._amp_lists = fp16_params_dict['amp_lists'] if self._amp_lists is None: