-
Notifications
You must be signed in to change notification settings - Fork 908
/
multibyte_split.cu
581 lines (488 loc) · 23.5 KB
/
multibyte_split.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
* Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "io/utilities/output_builder.cuh"
#include <cudf/column/column.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/nvtx/ranges.hpp>
#include <cudf/detail/offsets_iterator_factory.cuh>
#include <cudf/detail/utilities/cuda.cuh>
#include <cudf/detail/utilities/integer_utils.hpp>
#include <cudf/detail/utilities/stream_pool.hpp>
#include <cudf/io/text/byte_range_info.hpp>
#include <cudf/io/text/data_chunk_source.hpp>
#include <cudf/io/text/detail/multistate.hpp>
#include <cudf/io/text/detail/tile_state.hpp>
#include <cudf/io/text/multibyte_split.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/detail/strings_column_factories.cuh>
#include <cudf/strings/detail/utilities.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/memory_resource.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_scan.cuh>
#include <cuda/functional>
#include <thrust/copy.h>
#include <thrust/find.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
#include <cstdint>
#include <limits>
#include <memory>
#include <numeric>
#include <optional>
namespace cudf::io::text {
namespace detail {
namespace {
using cudf::io::text::detail::multistate;
int32_t constexpr ITEMS_PER_THREAD = 64;
int32_t constexpr THREADS_PER_TILE = 128;
int32_t constexpr ITEMS_PER_TILE = ITEMS_PER_THREAD * THREADS_PER_TILE;
int32_t constexpr TILES_PER_CHUNK = 4096;
int32_t constexpr ITEMS_PER_CHUNK = ITEMS_PER_TILE * TILES_PER_CHUNK;
constexpr multistate transition_init(char c, cudf::device_span<char const> delim)
{
auto result = multistate();
result.enqueue(0, 0);
for (std::size_t i = 0; i < delim.size(); i++) {
if (delim[i] == c) { result.enqueue(i, i + 1); }
}
return result;
}
constexpr multistate transition(char c, multistate state, cudf::device_span<char const> delim)
{
auto result = multistate();
result.enqueue(0, 0);
for (uint8_t i = 0; i < state.size(); i++) {
auto const tail = state.get_tail(i);
if (tail < delim.size() && delim[tail] == c) { result.enqueue(state.get_head(i), tail + 1); }
}
return result;
}
struct PatternScan {
using BlockScan = cub::BlockScan<multistate, THREADS_PER_TILE>;
using BlockScanCallback = cudf::io::text::detail::scan_tile_state_callback<multistate>;
struct _TempStorage {
typename BlockScan::TempStorage scan;
};
_TempStorage& _temp_storage;
using TempStorage = cub::Uninitialized<_TempStorage>;
__device__ inline PatternScan(TempStorage& temp_storage) : _temp_storage(temp_storage.Alias()) {}
__device__ inline void Scan(cudf::size_type tile_idx,
cudf::io::text::detail::scan_tile_state_view<multistate> tile_state,
cudf::device_span<char const> delim,
char (&thread_data)[ITEMS_PER_THREAD],
multistate& thread_multistate)
{
thread_multistate = transition_init(thread_data[0], delim);
for (uint32_t i = 1; i < ITEMS_PER_THREAD; i++) {
thread_multistate = transition(thread_data[i], thread_multistate, delim);
}
auto prefix_callback = BlockScanCallback(tile_state, tile_idx);
BlockScan(_temp_storage.scan)
.ExclusiveSum(thread_multistate, thread_multistate, prefix_callback);
}
};
// type aliases to distinguish between row offsets and character offsets
using output_offset = int64_t;
using byte_offset = int64_t;
// multibyte_split works by splitting up inputs in to 32 inputs (bytes) per thread, and transforming
// them in to data structures called "multistates". these multistates are created by searching a
// trie, but instead of a tradition trie where the search begins at a single node at the beginning,
// we allow our search to begin anywhere within the trie tree. The position within the trie tree is
// stored as a "partial match path", which indicates "we can get from here to there by a set of
// specific transitions". By scanning together multistates, we effectively know "we can get here
// from the beginning by following the inputs". By doing this, each thread knows exactly what state
// it begins in. From there, each thread can then take deterministic action. In this case, the
// deterministic action is counting and outputting delimiter offsets when a delimiter is found.
CUDF_KERNEL void multibyte_split_init_kernel(
cudf::size_type base_tile_idx,
cudf::size_type num_tiles,
cudf::io::text::detail::scan_tile_state_view<multistate> tile_multistates,
cudf::io::text::detail::scan_tile_state_view<output_offset> tile_output_offsets,
cudf::io::text::detail::scan_tile_status status =
cudf::io::text::detail::scan_tile_status::invalid)
{
auto const thread_idx = cudf::detail::grid_1d::global_thread_id();
if (thread_idx < num_tiles) {
auto const tile_idx = base_tile_idx + thread_idx;
tile_multistates.set_status(tile_idx, status);
tile_output_offsets.set_status(tile_idx, status);
}
}
CUDF_KERNEL __launch_bounds__(THREADS_PER_TILE) void multibyte_split_kernel(
cudf::size_type base_tile_idx,
byte_offset base_input_offset,
output_offset base_output_offset,
cudf::io::text::detail::scan_tile_state_view<multistate> tile_multistates,
cudf::io::text::detail::scan_tile_state_view<output_offset> tile_output_offsets,
cudf::device_span<char const> delim,
cudf::device_span<char const> chunk_input_chars,
cudf::split_device_span<byte_offset> row_offsets)
{
using InputLoad =
cub::BlockLoad<char, THREADS_PER_TILE, ITEMS_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using OffsetScan = cub::BlockScan<output_offset, THREADS_PER_TILE>;
using OffsetScanCallback = cudf::io::text::detail::scan_tile_state_callback<output_offset>;
__shared__ union {
typename InputLoad::TempStorage input_load;
typename PatternScan::TempStorage pattern_scan;
typename OffsetScan::TempStorage offset_scan;
} temp_storage;
auto const tile_idx = base_tile_idx + blockIdx.x;
auto const tile_input_offset = blockIdx.x * ITEMS_PER_TILE;
auto const thread_input_offset =
tile_input_offset + cudf::thread_index_type{threadIdx.x} * ITEMS_PER_THREAD;
auto const thread_input_size =
std::max<cudf::size_type>(chunk_input_chars.size() - thread_input_offset, 0);
// STEP 1: Load inputs
char thread_chars[ITEMS_PER_THREAD];
InputLoad(temp_storage.input_load)
.Load(chunk_input_chars.data() + tile_input_offset,
thread_chars,
chunk_input_chars.size() - tile_input_offset);
// STEP 2: Scan inputs to determine absolute thread states
multistate thread_multistate;
__syncthreads(); // required before temp_memory re-use
PatternScan(temp_storage.pattern_scan)
.Scan(tile_idx, tile_multistates, delim, thread_chars, thread_multistate);
// STEP 3: Flag matches
output_offset thread_offset{};
uint32_t thread_match_mask[(ITEMS_PER_THREAD + 31) / 32]{};
for (int32_t i = 0; i < ITEMS_PER_THREAD; i++) {
thread_multistate = transition(thread_chars[i], thread_multistate, delim);
auto const thread_state = thread_multistate.max_tail();
auto const is_match = i < thread_input_size and thread_state == delim.size();
thread_match_mask[i / 32] |= uint32_t{is_match} << (i % 32);
thread_offset += output_offset{is_match};
}
// STEP 4: Scan flags to determine absolute thread output offset
auto prefix_callback = OffsetScanCallback(tile_output_offsets, tile_idx);
__syncthreads(); // required before temp_memory re-use
OffsetScan(temp_storage.offset_scan).ExclusiveSum(thread_offset, thread_offset, prefix_callback);
// Step 5: Assign outputs from each thread using match offsets.
for (int32_t i = 0; i < ITEMS_PER_THREAD; i++) {
auto const is_match = (thread_match_mask[i / 32] >> (i % 32)) & 1u;
if (is_match) {
auto const match_end = base_input_offset + thread_input_offset + i + 1;
row_offsets[thread_offset - base_output_offset] = match_end;
thread_offset++;
}
}
}
CUDF_KERNEL __launch_bounds__(THREADS_PER_TILE) void byte_split_kernel(
cudf::size_type base_tile_idx,
byte_offset base_input_offset,
output_offset base_output_offset,
cudf::io::text::detail::scan_tile_state_view<output_offset> tile_output_offsets,
char delim,
cudf::device_span<char const> chunk_input_chars,
cudf::split_device_span<byte_offset> row_offsets)
{
using InputLoad =
cub::BlockLoad<char, THREADS_PER_TILE, ITEMS_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using OffsetScan = cub::BlockScan<output_offset, THREADS_PER_TILE>;
using OffsetScanCallback = cudf::io::text::detail::scan_tile_state_callback<output_offset>;
__shared__ union {
typename InputLoad::TempStorage input_load;
typename OffsetScan::TempStorage offset_scan;
} temp_storage;
auto const tile_idx = base_tile_idx + blockIdx.x;
auto const tile_input_offset = blockIdx.x * ITEMS_PER_TILE;
auto const thread_input_offset =
tile_input_offset + cudf::thread_index_type{threadIdx.x} * ITEMS_PER_THREAD;
auto const thread_input_size =
std::max<cudf::size_type>(chunk_input_chars.size() - thread_input_offset, 0);
// STEP 1: Load inputs
char thread_chars[ITEMS_PER_THREAD];
InputLoad(temp_storage.input_load)
.Load(chunk_input_chars.data() + tile_input_offset,
thread_chars,
chunk_input_chars.size() - tile_input_offset);
// STEP 2: Flag matches
output_offset thread_offset{};
uint32_t thread_match_mask[(ITEMS_PER_THREAD + 31) / 32]{};
for (int32_t i = 0; i < ITEMS_PER_THREAD; i++) {
auto const is_match = i < thread_input_size and thread_chars[i] == delim;
thread_match_mask[i / 32] |= uint32_t{is_match} << (i % 32);
thread_offset += output_offset{is_match};
}
// STEP 3: Scan flags to determine absolute thread output offset
auto prefix_callback = OffsetScanCallback(tile_output_offsets, tile_idx);
__syncthreads(); // required before temp_memory re-use
OffsetScan(temp_storage.offset_scan).ExclusiveSum(thread_offset, thread_offset, prefix_callback);
// Step 4: Assign outputs from each thread using match offsets.
for (int32_t i = 0; i < ITEMS_PER_THREAD; i++) {
auto const is_match = (thread_match_mask[i / 32] >> (i % 32)) & 1u;
if (is_match) {
auto const match_end = base_input_offset + thread_input_offset + i + 1;
row_offsets[thread_offset - base_output_offset] = match_end;
thread_offset++;
}
}
}
} // namespace
std::unique_ptr<cudf::column> multibyte_split(cudf::io::text::data_chunk_source const& source,
std::string const& delimiter,
byte_range_info byte_range,
bool strip_delimiters,
rmm::cuda_stream_view stream,
rmm::device_async_resource_ref mr)
{
CUDF_FUNC_RANGE();
if (byte_range.is_empty()) { return make_empty_column(type_id::STRING); }
auto device_delim = cudf::string_scalar(delimiter, true, stream, mr);
auto sorted_delim = delimiter;
std::sort(sorted_delim.begin(), sorted_delim.end());
auto [_last_char, _last_char_count, max_duplicate_tokens] = std::accumulate(
sorted_delim.begin(), sorted_delim.end(), std::make_tuple('\0', 0, 0), [](auto acc, char c) {
if (std::get<0>(acc) != c) {
std::get<0>(acc) = c;
std::get<1>(acc) = 0;
}
std::get<1>(acc)++;
std::get<2>(acc) = std::max(std::get<1>(acc), std::get<2>(acc));
return acc;
});
CUDF_EXPECTS(max_duplicate_tokens < multistate::max_segment_count,
"delimiter contains too many duplicate tokens to produce a deterministic result.");
CUDF_EXPECTS(delimiter.size() < multistate::max_segment_value,
"delimiter contains too many total tokens to produce a deterministic result.");
auto chunk_offset = std::max<byte_offset>(0, byte_range.offset() - delimiter.size());
std::optional<byte_offset> first_row_offset;
if (byte_range.offset() == 0) { first_row_offset = 0; }
std::optional<byte_offset> last_row_offset;
auto [global_offsets, chars] = [&] {
// must be at least 32 when using warp-reduce on partials
// must be at least 1 more than max possible concurrent tiles
// best when at least 32 more than max possible concurrent tiles, due to rolling `invalid`s
auto const concurrency = 2;
auto num_tile_states = std::max(32, TILES_PER_CHUNK * concurrency + 32);
auto tile_multistates =
scan_tile_state<multistate>(num_tile_states, stream, cudf::get_current_device_resource_ref());
auto tile_offsets = scan_tile_state<output_offset>(
num_tile_states, stream, cudf::get_current_device_resource_ref());
multibyte_split_init_kernel<<<TILES_PER_CHUNK,
THREADS_PER_TILE,
0,
stream.value()>>>( //
-TILES_PER_CHUNK,
TILES_PER_CHUNK,
tile_multistates,
tile_offsets,
cudf::io::text::detail::scan_tile_status::oob);
auto multistate_seed = multistate();
multistate_seed.enqueue(0, 0); // this represents the first state in the pattern.
// Seeding the tile state with an identity value allows the 0th tile to follow the same logic as
// the Nth tile, assuming it can look up an inclusive prefix. Without this seed, the 0th block
// would have to follow separate logic.
cudf::detail::device_single_thread(
[tm = scan_tile_state_view<multistate>(tile_multistates),
to = scan_tile_state_view<output_offset>(tile_offsets),
multistate_seed] __device__() mutable {
tm.set_inclusive_prefix(-1, multistate_seed);
to.set_inclusive_prefix(-1, 0);
},
stream);
auto reader = source.create_reader();
auto const byte_range_end = byte_range.offset() + byte_range.size();
reader->skip_bytes(chunk_offset);
// amortize output chunk allocations over 8 worst-case outputs. This limits the overallocation
constexpr auto max_growth = 8;
output_builder<byte_offset> row_offset_storage(ITEMS_PER_CHUNK, max_growth, stream);
output_builder<char> char_storage(ITEMS_PER_CHUNK, max_growth, stream);
auto streams = cudf::detail::fork_streams(stream, concurrency);
cudaEvent_t last_launch_event;
CUDF_CUDA_TRY(cudaEventCreate(&last_launch_event));
auto& read_stream = streams[0];
auto& scan_stream = streams[1];
auto chunk = reader->get_next_chunk(ITEMS_PER_CHUNK, read_stream);
int64_t base_tile_idx = 0;
bool found_last_offset = false;
std::swap(read_stream, scan_stream);
while (chunk->size() > 0) {
// if we found the last delimiter, or didn't find delimiters inside the byte range at all:
// abort
if (last_row_offset.has_value() or
(not first_row_offset.has_value() and chunk_offset >= byte_range_end)) {
break;
}
auto tiles_in_launch =
cudf::util::div_rounding_up_safe(chunk->size(), static_cast<std::size_t>(ITEMS_PER_TILE));
auto row_offsets = row_offset_storage.next_output(scan_stream);
// reset the next chunk of tile state
multibyte_split_init_kernel<<<tiles_in_launch,
THREADS_PER_TILE,
0,
scan_stream.value()>>>( //
base_tile_idx,
tiles_in_launch,
tile_multistates,
tile_offsets);
CUDF_CUDA_TRY(cudaStreamWaitEvent(scan_stream.value(), last_launch_event));
if (delimiter.size() == 1) {
// the single-byte case allows for a much more efficient kernel, so we special-case it
byte_split_kernel<<<tiles_in_launch,
THREADS_PER_TILE,
0,
scan_stream.value()>>>( //
base_tile_idx,
chunk_offset,
row_offset_storage.size(),
tile_offsets,
delimiter[0],
*chunk,
row_offsets);
} else {
multibyte_split_kernel<<<tiles_in_launch,
THREADS_PER_TILE,
0,
scan_stream.value()>>>( //
base_tile_idx,
chunk_offset,
row_offset_storage.size(),
tile_multistates,
tile_offsets,
{device_delim.data(), static_cast<std::size_t>(device_delim.size())},
*chunk,
row_offsets);
}
// load the next chunk
auto next_chunk = reader->get_next_chunk(ITEMS_PER_CHUNK, read_stream);
// while that is running, determine how many offsets we output (synchronizes)
auto const new_offsets = [&] {
auto const new_offsets_unclamped =
tile_offsets.get_inclusive_prefix(base_tile_idx + tiles_in_launch - 1, scan_stream) -
static_cast<output_offset>(row_offset_storage.size());
// if we are not in the last chunk, we can use all offsets
if (chunk_offset + static_cast<output_offset>(chunk->size()) < byte_range_end) {
return new_offsets_unclamped;
}
// if we are in the last chunk, we need to find the first out-of-bounds offset
auto const it = thrust::make_counting_iterator(output_offset{});
auto const end_loc =
*thrust::find_if(rmm::exec_policy_nosync(scan_stream),
it,
it + new_offsets_unclamped,
[row_offsets, byte_range_end] __device__(output_offset i) {
return row_offsets[i] >= byte_range_end;
});
// if we had no out-of-bounds offset, we copy all offsets
if (end_loc == new_offsets_unclamped) { return end_loc; }
// otherwise we copy only up to (including) the first out-of-bounds delimiter
found_last_offset = true;
return end_loc + 1;
}();
row_offset_storage.advance_output(new_offsets, scan_stream);
// determine if we found the first or last field offset for the byte range
if (new_offsets > 0 and not first_row_offset) {
first_row_offset = row_offset_storage.front_element(scan_stream);
}
if (found_last_offset) { last_row_offset = row_offset_storage.back_element(scan_stream); }
// copy over the characters we need, if we already encountered the first field delimiter
if (first_row_offset.has_value()) {
auto const begin =
chunk->data() + std::max<byte_offset>(0, *first_row_offset - chunk_offset);
auto const sentinel = last_row_offset.value_or(std::numeric_limits<byte_offset>::max());
auto const end =
chunk->data() + std::min<byte_offset>(sentinel - chunk_offset, chunk->size());
auto const output_size = end - begin;
auto char_output = char_storage.next_output(scan_stream);
thrust::copy(rmm::exec_policy_nosync(scan_stream), begin, end, char_output.begin());
char_storage.advance_output(output_size, scan_stream);
}
CUDF_CUDA_TRY(cudaEventRecord(last_launch_event, scan_stream.value()));
std::swap(read_stream, scan_stream);
base_tile_idx += tiles_in_launch;
chunk_offset += chunk->size();
chunk = std::move(next_chunk);
}
CUDF_CUDA_TRY(cudaEventDestroy(last_launch_event));
cudf::detail::join_streams(streams, stream);
auto chars = char_storage.gather(stream, mr);
auto global_offsets = row_offset_storage.gather(stream, mr);
return std::pair{std::move(global_offsets), std::move(chars)};
}();
// if the input was empty, we didn't find a delimiter at all,
// or the first delimiter was also the last: empty output
if (chunk_offset == 0 or not first_row_offset.has_value() or
first_row_offset == last_row_offset) {
return make_empty_column(type_id::STRING);
}
// insert an offset at the beginning if we started at the beginning of the input
bool const insert_begin = first_row_offset.value_or(0) == 0;
// insert an offset at the end if we have not terminated the last row
bool const insert_end =
not(last_row_offset.has_value() or
(global_offsets.size() > 0 and global_offsets.back_element(stream) == chunk_offset));
auto const chars_bytes = chunk_offset - *first_row_offset;
auto offsets = cudf::strings::detail::create_offsets_child_column(
chars_bytes, global_offsets.size() + insert_begin + insert_end, stream, mr);
auto offsets_itr =
cudf::detail::offsetalator_factory::make_output_iterator(offsets->mutable_view());
auto set_offset_value = [offsets_itr, stream](size_type index, int64_t value) {
cudf::detail::device_single_thread(
[offsets_itr, index, value] __device__() mutable { offsets_itr[index] = value; }, stream);
};
if (insert_begin) { set_offset_value(0, 0); }
if (insert_end) { set_offset_value(offsets->size() - 1, chars_bytes); }
thrust::transform(rmm::exec_policy(stream),
global_offsets.begin(),
global_offsets.end(),
offsets_itr + insert_begin,
cuda::proclaim_return_type<int64_t>(
[baseline = *first_row_offset] __device__(byte_offset global_offset) {
return (global_offset - baseline);
}));
auto string_count = offsets->size() - 1;
if (strip_delimiters) {
auto it = cudf::detail::make_counting_transform_iterator(
0,
cuda::proclaim_return_type<thrust::pair<char*, int32_t>>(
[ofs = cudf::detail::offsetalator_factory::make_input_iterator(offsets->view()),
chars = chars.data(),
delim_size = static_cast<size_type>(delimiter.size()),
last_row = static_cast<size_type>(string_count) - 1,
insert_end] __device__(size_type row) {
auto const begin = ofs[row];
auto const len = static_cast<size_type>(ofs[row + 1] - begin);
if (row == last_row && insert_end) {
return thrust::make_pair(chars + begin, len);
} else {
return thrust::make_pair(chars + begin, std::max<size_type>(0, len - delim_size));
};
}));
return cudf::strings::detail::make_strings_column(it, it + string_count, stream, mr);
} else {
return cudf::make_strings_column(string_count, std::move(offsets), chars.release(), 0, {});
}
}
} // namespace detail
std::unique_ptr<cudf::column> multibyte_split(cudf::io::text::data_chunk_source const& source,
std::string const& delimiter,
parse_options options,
rmm::cuda_stream_view stream,
rmm::device_async_resource_ref mr)
{
auto result = detail::multibyte_split(
source, delimiter, options.byte_range, options.strip_delimiters, stream, mr);
return result;
}
} // namespace cudf::io::text