diff --git a/python/cuml/test/dask/test_nearest_neighbors.py b/python/cuml/test/dask/test_nearest_neighbors.py index cde8a5032f..7047b61aa2 100644 --- a/python/cuml/test/dask/test_nearest_neighbors.py +++ b/python/cuml/test/dask/test_nearest_neighbors.py @@ -70,8 +70,7 @@ def _scale_rows(client, nrows): return n_workers * nrows -@pytest.mark.parametrize("nrows", [unit_param(100), - unit_param(1e3), +@pytest.mark.parametrize("nrows", [unit_param(300), quality_param(1e6), stress_param(5e8)]) @pytest.mark.parametrize("ncols", [10, 30]) @@ -81,8 +80,8 @@ def _scale_rows(client, nrows): stress_param(100)]) @pytest.mark.parametrize("n_parts", [unit_param(1), unit_param(5), quality_param(7), stress_param(50)]) -@pytest.mark.parametrize("streams_per_handle", [5, 10]) -@pytest.mark.parametrize("reverse_worker_order", [True, False]) +@pytest.mark.parametrize("streams_per_handle,reverse_worker_order", + [(5, True), (10, False)]) def test_compare_skl(nrows, ncols, nclusters, n_parts, n_neighbors, streams_per_handle, reverse_worker_order, client): diff --git a/python/cuml/test/test_dbscan.py b/python/cuml/test/test_dbscan.py index b5c65c5ca8..0c9d5c8e88 100644 --- a/python/cuml/test/test_dbscan.py +++ b/python/cuml/test/test_dbscan.py @@ -311,8 +311,9 @@ def test_core_point_prop3(): @pytest.mark.parametrize('datatype', [np.float32, np.float64]) @pytest.mark.parametrize('use_handle', [True, False]) @pytest.mark.parametrize('out_dtype', ["int32", np.int32, "int64", np.int64]) -def test_dbscan_propagation(datatype, use_handle, out_dtype): - X, y = make_blobs(5000, centers=1, cluster_std=8.0, +@pytest.mark.parametrize('n_samples', [unit_param(500), stress_param(5000)]) +def test_dbscan_propagation(datatype, use_handle, out_dtype, n_samples): + X, y = make_blobs(n_samples, centers=1, cluster_std=8.0, center_box=(-100.0, 100.0), random_state=8) X = X.astype(datatype) diff --git a/python/cuml/test/test_umap.py b/python/cuml/test/test_umap.py index c04d39845e..e03c00f361 100644 --- a/python/cuml/test/test_umap.py +++ b/python/cuml/test/test_umap.py @@ -231,7 +231,7 @@ def test_umap_fit_transform_trust(name, target_metric): data = wine.data labels = wine.target else: - data, labels = make_blobs(n_samples=5000, n_features=10, + data, labels = make_blobs(n_samples=500, n_features=10, centers=10, random_state=42) model = umap.UMAP(n_neighbors=10, min_dist=0.01, @@ -336,8 +336,15 @@ def test_umap_fit_transform_against_fit_and_transform(): assert joblib.hash(ft_embedding) != joblib.hash(fit_embedding_diff_input) -@pytest.mark.parametrize('n_components', [2, 21, 25, 50]) -@pytest.mark.parametrize('random_state', [None, 8, np.random.RandomState(42)]) +@pytest.mark.parametrize('n_components,random_state', + [unit_param(2, None), + unit_param(2, 8), + unit_param(2, np.random.RandomState(42)), + unit_param(21, None), + unit_param(21, np.random.RandomState(42)), + unit_param(25, 8), + unit_param(50, None), + stress_param(50, 8)]) def test_umap_fit_transform_reproducibility(n_components, random_state): n_samples = 8000 @@ -372,8 +379,15 @@ def get_embedding(n_components, random_state): assert mean_diff > 0.5 -@pytest.mark.parametrize('n_components', [2, 21, 25, 50]) -@pytest.mark.parametrize('random_state', [None, 8, np.random.RandomState(42)]) +@pytest.mark.parametrize('n_components,random_state', + [unit_param(2, None), + unit_param(2, 8), + unit_param(2, np.random.RandomState(42)), + unit_param(21, None), + unit_param(25, 8), + unit_param(25, np.random.RandomState(42)), + unit_param(50, None), + stress_param(50, 8)]) def test_umap_transform_reproducibility(n_components, random_state): n_samples = 5000