-
Notifications
You must be signed in to change notification settings - Fork 402
/
values.yaml
286 lines (273 loc) · 9.52 KB
/
values.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Default values for ray-cluster.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
# The KubeRay community welcomes PRs to expose additional configuration
# in this Helm chart.
image:
repository: rayproject/ray
tag: 2.9.0
pullPolicy: IfNotPresent
nameOverride: "kuberay"
fullnameOverride: ""
imagePullSecrets: []
# - name: an-existing-secret
# common defined values shared between the head and worker
common:
# containerEnv specifies environment variables for the Ray head and worker containers.
# Follows standard K8s container env schema.
containerEnv: []
# - name: BLAH
# value: VAL
head:
# rayVersion determines the autoscaler's image version.
# It should match the Ray version in the image of the containers.
# rayVersion: 2.9.0
# If enableInTreeAutoscaling is true, the autoscaler sidecar will be added to the Ray head pod.
# Ray autoscaler integration is supported only for Ray versions >= 1.11.0
# Ray autoscaler integration is Beta with KubeRay >= 0.3.0 and Ray >= 2.0.0.
# enableInTreeAutoscaling: true
# autoscalerOptions is an OPTIONAL field specifying configuration overrides for the Ray autoscaler.
# The example configuration shown below represents the DEFAULT values.
# autoscalerOptions:
# upscalingMode: Default
# idleTimeoutSeconds is the number of seconds to wait before scaling down a worker pod which is not using Ray resources.
# idleTimeoutSeconds: 60
# imagePullPolicy optionally overrides the autoscaler container's default image pull policy (IfNotPresent).
# imagePullPolicy: IfNotPresent
# Optionally specify the autoscaler container's securityContext.
# securityContext: {}
# env: []
# envFrom: []
# resources specifies optional resource request and limit overrides for the autoscaler container.
# For large Ray clusters, we recommend monitoring container resource usage to determine if overriding the defaults is required.
# resources:
# limits:
# cpu: "500m"
# memory: "512Mi"
# requests:
# cpu: "500m"
# memory: "512Mi"
labels: {}
# Note: From KubeRay v0.6.0, users need to create the ServiceAccount by themselves if they specify the `serviceAccountName`
# in the headGroupSpec. See https://github.com/ray-project/kuberay/pull/1128 for more details.
serviceAccountName: ""
restartPolicy: ""
rayStartParams:
dashboard-host: '0.0.0.0'
# containerEnv specifies environment variables for the Ray container,
# Follows standard K8s container env schema.
containerEnv: []
# - name: EXAMPLE_ENV
# value: "1"
envFrom: []
# - secretRef:
# name: my-env-secret
# ports optionally allows specifying ports for the Ray container.
# ports: []
# resource requests and limits for the Ray head container.
# Modify as needed for your application.
# Note that the resources in this example are much too small for production;
# we don't recommend allocating less than 8G memory for a Ray pod in production.
# Ray pods should be sized to take up entire K8s nodes when possible.
# Always set CPU and memory limits for Ray pods.
# It is usually best to set requests equal to limits.
# See https://docs.ray.io/en/latest/cluster/kubernetes/user-guides/config.html#resources
# for further guidance.
resources:
limits:
cpu: "1"
# To avoid out-of-memory issues, never allocate less than 2G memory for the Ray head.
memory: "2G"
requests:
cpu: "1"
memory: "2G"
annotations: {}
nodeSelector: {}
tolerations: []
affinity: {}
# Pod security context.
podSecurityContext: {}
# Ray container security context.
securityContext: {}
# Optional: The following volumes/volumeMounts configurations are optional but recommended because
# Ray writes logs to /tmp/ray/session_latests/logs instead of stdout/stderr.
volumes:
- name: log-volume
emptyDir: {}
volumeMounts:
- mountPath: /tmp/ray
name: log-volume
# sidecarContainers specifies additional containers to attach to the Ray pod.
# Follows standard K8s container spec.
sidecarContainers: []
# See docs/guidance/pod-command.md for more details about how to specify
# container command for head Pod.
command: []
args: []
# Optional, for the user to provide any additional fields to the service.
# See https://pkg.go.dev/k8s.io/Kubernetes/pkg/api/v1#Service
headService: {}
# metadata:
# annotations:
# prometheus.io/scrape: "true"
# Custom pod DNS configuration
# See https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-dns-config
# dnsConfig:
# nameservers:
# - 8.8.8.8
# searches:
# - example.local
# options:
# - name: ndots
# value: "2"
# - name: edns0
topologySpreadConstraints: {}
worker:
# If you want to disable the default workergroup
# uncomment the line below
# disabled: true
groupName: workergroup
replicas: 1
minReplicas: 1
maxReplicas: 3
labels: {}
serviceAccountName: ""
restartPolicy: ""
rayStartParams: {}
# containerEnv specifies environment variables for the Ray container,
# Follows standard K8s container env schema.
containerEnv: []
# - name: EXAMPLE_ENV
# value: "1"
envFrom: []
# - secretRef:
# name: my-env-secret
# ports optionally allows specifying ports for the Ray container.
# ports: []
# resource requests and limits for the Ray head container.
# Modify as needed for your application.
# Note that the resources in this example are much too small for production;
# we don't recommend allocating less than 8G memory for a Ray pod in production.
# Ray pods should be sized to take up entire K8s nodes when possible.
# Always set CPU and memory limits for Ray pods.
# It is usually best to set requests equal to limits.
# See https://docs.ray.io/en/latest/cluster/kubernetes/user-guides/config.html#resources
# for further guidance.
resources:
limits:
cpu: "1"
memory: "1G"
requests:
cpu: "1"
memory: "1G"
annotations: {}
nodeSelector: {}
tolerations: []
affinity: {}
# Pod security context.
podSecurityContext: {}
# Ray container security context.
securityContext: {}
# Optional: The following volumes/volumeMounts configurations are optional but recommended because
# Ray writes logs to /tmp/ray/session_latests/logs instead of stdout/stderr.
volumes:
- name: log-volume
emptyDir: {}
volumeMounts:
- mountPath: /tmp/ray
name: log-volume
# sidecarContainers specifies additional containers to attach to the Ray pod.
# Follows standard K8s container spec.
sidecarContainers: []
# See docs/guidance/pod-command.md for more details about how to specify
# container command for worker Pod.
command: []
args: []
topologySpreadConstraints: {}
# Custom pod DNS configuration
# See https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-dns-config
# dnsConfig:
# nameservers:
# - 8.8.8.8
# searches:
# - example.local
# options:
# - name: ndots
# value: "2"
# - name: edns0
# The map's key is used as the groupName.
# For example, key:small-group in the map below
# will be used as the groupName
additionalWorkerGroups:
smallGroup:
# Disabled by default
disabled: true
replicas: 0
minReplicas: 0
maxReplicas: 3
labels: {}
serviceAccountName: ""
restartPolicy: ""
rayStartParams: {}
# containerEnv specifies environment variables for the Ray container,
# Follows standard K8s container env schema.
containerEnv: []
# - name: EXAMPLE_ENV
# value: "1"
envFrom: []
# - secretRef:
# name: my-env-secret
# ports optionally allows specifying ports for the Ray container.
# ports: []
# resource requests and limits for the Ray head container.
# Modify as needed for your application.
# Note that the resources in this example are much too small for production;
# we don't recommend allocating less than 8G memory for a Ray pod in production.
# Ray pods should be sized to take up entire K8s nodes when possible.
# Always set CPU and memory limits for Ray pods.
# It is usually best to set requests equal to limits.
# See https://docs.ray.io/en/latest/cluster/kubernetes/user-guides/config.html#resources
# for further guidance.
resources:
limits:
cpu: 1
memory: "1G"
requests:
cpu: 1
memory: "1G"
annotations: {}
nodeSelector: {}
tolerations: []
affinity: {}
# Pod security context.
podSecurityContext: {}
# Ray container security context.
securityContext: {}
# Optional: The following volumes/volumeMounts configurations are optional but recommended because
# Ray writes logs to /tmp/ray/session_latests/logs instead of stdout/stderr.
volumes:
- name: log-volume
emptyDir: {}
volumeMounts:
- mountPath: /tmp/ray
name: log-volume
sidecarContainers: []
# See docs/guidance/pod-command.md for more details about how to specify
# container command for worker Pod.
command: []
args: []
# Custom pod DNS configuration
# See https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-dns-config
# dnsConfig:
# nameservers:
# - 8.8.8.8
# searches:
# - example.local
# options:
# - name: ndots
# value: "2"
# - name: edns0
# Configuration for Head's Kubernetes Service
service:
# This is optional, and the default is ClusterIP.
type: ClusterIP