forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_bundled_inputs.py
443 lines (379 loc) · 16.1 KB
/
test_bundled_inputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#!/usr/bin/env python3
# Owner(s): ["oncall: mobile"]
import io
import textwrap
from typing import List, Optional, Dict
import torch
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
def model_size(sm):
buffer = io.BytesIO()
torch.jit.save(sm, buffer)
return len(buffer.getvalue())
def save_and_load(sm):
buffer = io.BytesIO()
torch.jit.save(sm, buffer)
buffer.seek(0)
return torch.jit.load(buffer)
class TestBundledInputs(TestCase):
def test_single_tensors(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
sm = torch.jit.script(SingleTensorModel())
original_size = model_size(sm)
get_expr : List[str] = []
samples = [
# Tensor with small numel and small storage.
(torch.tensor([1]),),
# Tensor with large numel and small storage.
(torch.tensor([[2, 3, 4]]).expand(1 << 16, -1)[:, ::2],),
# Tensor with small numel and large storage.
(torch.tensor(range(1 << 16))[-8:],),
# Large zero tensor.
(torch.zeros(1 << 16),),
# Large channels-last ones tensor.
(torch.ones(4, 8, 32, 32).contiguous(memory_format=torch.channels_last),),
# Special encoding of random tensor.
(torch.utils.bundled_inputs.bundle_randn(1 << 16),),
# Quantized uniform tensor.
(torch.quantize_per_tensor(torch.zeros(4, 8, 32, 32), 1, 0, torch.qint8),),
]
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
sm, samples, get_expr)
# print(get_expr[0])
# print(sm._generate_bundled_inputs.code)
# Make sure the model only grew a little bit,
# despite having nominally large bundled inputs.
augmented_size = model_size(sm)
self.assertLess(augmented_size, original_size + (1 << 12))
loaded = save_and_load(sm)
inflated = loaded.get_all_bundled_inputs()
self.assertEqual(loaded.get_num_bundled_inputs(), len(samples))
self.assertEqual(len(inflated), len(samples))
self.assertTrue(loaded(*inflated[0]) is inflated[0][0])
for idx, inp in enumerate(inflated):
self.assertIsInstance(inp, tuple)
self.assertEqual(len(inp), 1)
self.assertIsInstance(inp[0], torch.Tensor)
if idx != 5:
# Strides might be important for benchmarking.
self.assertEqual(inp[0].stride(), samples[idx][0].stride())
self.assertEqual(inp[0], samples[idx][0], exact_dtype=True)
# This tensor is random, but with 100,000 trials,
# mean and std had ranges of (-0.0154, 0.0144) and (0.9907, 1.0105).
self.assertEqual(inflated[5][0].shape, (1 << 16,))
self.assertEqual(inflated[5][0].mean().item(), 0, atol=0.025, rtol=0)
self.assertEqual(inflated[5][0].std().item(), 1, atol=0.02, rtol=0)
def test_large_tensor_with_inflation(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
sm = torch.jit.script(SingleTensorModel())
sample_tensor = torch.randn(1 << 16)
# We can store tensors with custom inflation functions regardless
# of size, even if inflation is just the identity.
sample = torch.utils.bundled_inputs.bundle_large_tensor(sample_tensor)
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
sm, [(sample,)])
loaded = save_and_load(sm)
inflated = loaded.get_all_bundled_inputs()
self.assertEqual(len(inflated), 1)
self.assertEqual(inflated[0][0], sample_tensor)
def test_rejected_tensors(self):
def check_tensor(sample):
# Need to define the class in this scope to get a fresh type for each run.
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
sm = torch.jit.script(SingleTensorModel())
with self.assertRaisesRegex(Exception, "Bundled input argument"):
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
sm, [(sample,)])
# Plain old big tensor.
check_tensor(torch.randn(1 << 16))
# This tensor has two elements, but they're far apart in memory.
# We currently cannot represent this compactly while preserving
# the strides.
small_sparse = torch.randn(2, 1 << 16)[:, 0:1]
self.assertEqual(small_sparse.numel(), 2)
check_tensor(small_sparse)
def test_non_tensors(self):
class StringAndIntModel(torch.nn.Module):
def forward(self, fmt: str, num: int):
return fmt.format(num)
sm = torch.jit.script(StringAndIntModel())
samples = [
("first {}", 1),
("second {}", 2),
]
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
sm, samples)
loaded = save_and_load(sm)
inflated = loaded.get_all_bundled_inputs()
self.assertEqual(inflated, samples)
self.assertTrue(loaded(*inflated[0]) == "first 1")
def test_multiple_methods_with_inputs(self):
class MultipleMethodModel(torch.nn.Module):
def forward(self, arg):
return arg
@torch.jit.export
def foo(self, arg):
return arg
mm = torch.jit.script(MultipleMethodModel())
samples = [
# Tensor with small numel and small storage.
(torch.tensor([1]),),
# Tensor with large numel and small storage.
(torch.tensor([[2, 3, 4]]).expand(1 << 16, -1)[:, ::2],),
# Tensor with small numel and large storage.
(torch.tensor(range(1 << 16))[-8:],),
# Large zero tensor.
(torch.zeros(1 << 16),),
# Large channels-last ones tensor.
(torch.ones(4, 8, 32, 32).contiguous(memory_format=torch.channels_last),),
]
info = [
'Tensor with small numel and small storage.',
'Tensor with large numel and small storage.',
'Tensor with small numel and large storage.',
'Large zero tensor.',
'Large channels-last ones tensor.',
'Special encoding of random tensor.',
]
torch.utils.bundled_inputs.augment_many_model_functions_with_bundled_inputs(
mm,
inputs={
mm.forward : samples,
mm.foo : samples
},
info={
mm.forward : info,
mm.foo : info
}
)
loaded = save_and_load(mm)
inflated = loaded.get_all_bundled_inputs()
# Make sure these functions are all consistent.
self.assertEqual(inflated, samples)
self.assertEqual(inflated, loaded.get_all_bundled_inputs_for_forward())
self.assertEqual(inflated, loaded.get_all_bundled_inputs_for_foo())
# Check running and size helpers
self.assertTrue(loaded(*inflated[0]) is inflated[0][0])
self.assertEqual(loaded.get_num_bundled_inputs(), len(samples))
# Check helper that work on all functions
all_info = loaded.get_bundled_inputs_functions_and_info()
self.assertEqual(set(all_info.keys()), set(['forward', 'foo']))
self.assertEqual(all_info['forward']['get_inputs_function_name'], ['get_all_bundled_inputs_for_forward'])
self.assertEqual(all_info['foo']['get_inputs_function_name'], ['get_all_bundled_inputs_for_foo'])
self.assertEqual(all_info['forward']['info'], info)
self.assertEqual(all_info['foo']['info'], info)
# example of how to turn the 'get_inputs_function_name' into the actual list of bundled inputs
for func_name in all_info.keys():
input_func_name = all_info[func_name]['get_inputs_function_name'][0]
func_to_run = getattr(loaded, input_func_name)
self.assertEqual(func_to_run(), samples)
def test_multiple_methods_with_inputs_both_defined_failure(self):
class MultipleMethodModel(torch.nn.Module):
def forward(self, arg):
return arg
@torch.jit.export
def foo(self, arg):
return arg
samples = [(torch.tensor([1]),)]
# inputs defined 2 ways so should fail
with self.assertRaises(Exception):
mm = torch.jit.script(MultipleMethodModel())
definition = textwrap.dedent("""
def _generate_bundled_inputs_for_forward(self):
return []
""")
mm.define(definition)
torch.utils.bundled_inputs.augment_many_model_functions_with_bundled_inputs(
mm,
inputs={
mm.forward : samples,
mm.foo : samples,
},
)
def test_multiple_methods_with_inputs_neither_defined_failure(self):
class MultipleMethodModel(torch.nn.Module):
def forward(self, arg):
return arg
@torch.jit.export
def foo(self, arg):
return arg
samples = [(torch.tensor([1]),)]
# inputs not defined so should fail
with self.assertRaises(Exception):
mm = torch.jit.script(MultipleMethodModel())
mm._generate_bundled_inputs_for_forward()
torch.utils.bundled_inputs.augment_many_model_functions_with_bundled_inputs(
mm,
inputs={
mm.forward : None,
mm.foo : samples,
},
)
def test_bad_inputs(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
# Non list for input list
with self.assertRaises(TypeError):
m = torch.jit.script(SingleTensorModel())
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
m,
inputs="foo" # type: ignore[arg-type]
)
# List of non tuples. Most common error using the api.
with self.assertRaises(TypeError):
m = torch.jit.script(SingleTensorModel())
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
m,
inputs=[torch.ones(1, 2), ] # type: ignore[list-item]
)
def test_double_augment_fail(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
m = torch.jit.script(SingleTensorModel())
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
m,
inputs=[(torch.ones(1),)]
)
with self.assertRaisesRegex(Exception, "Models can only be augmented with bundled inputs once."):
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
m,
inputs=[(torch.ones(1),)]
)
def test_double_augment_non_mutator(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
m = torch.jit.script(SingleTensorModel())
bundled_model = torch.utils.bundled_inputs.bundle_inputs(
m,
inputs=[(torch.ones(1),)]
)
with self.assertRaises(AttributeError):
m.get_all_bundled_inputs()
self.assertEqual(bundled_model.get_all_bundled_inputs(), [(torch.ones(1),)])
self.assertEqual(bundled_model.forward(torch.ones(1)), torch.ones(1))
def test_double_augment_success(self):
class SingleTensorModel(torch.nn.Module):
def forward(self, arg):
return arg
m = torch.jit.script(SingleTensorModel())
bundled_model = torch.utils.bundled_inputs.bundle_inputs(
m,
inputs={m.forward : [(torch.ones(1),)]}
)
self.assertEqual(bundled_model.get_all_bundled_inputs(), [(torch.ones(1),)])
bundled_model2 = torch.utils.bundled_inputs.bundle_inputs(
bundled_model,
inputs=[(torch.ones(2),)]
)
self.assertEqual(bundled_model2.get_all_bundled_inputs(), [(torch.ones(2),)])
def test_dict_args(self):
class MyModel(torch.nn.Module):
def forward(
self,
arg1: Optional[Dict[str, torch.Tensor]],
arg2: Optional[List[torch.Tensor]],
arg3: torch.Tensor,
):
if arg1 is None:
return arg3
elif arg2 is None:
return arg1["a"] + arg1["b"]
else:
return arg1["a"] + arg1["b"] + arg2[0]
small_sample = dict(
a=torch.zeros([10, 20]),
b=torch.zeros([1, 1]),
c=torch.zeros([10, 20]),
)
small_list = [torch.zeros([10, 20])]
big_sample = dict(
a=torch.zeros([1 << 5, 1 << 8, 1 << 10]),
b=torch.zeros([1 << 5, 1 << 8, 1 << 10]),
c=torch.zeros([1 << 5, 1 << 8, 1 << 10]),
)
big_list = [torch.zeros([1 << 5, 1 << 8, 1 << 10])]
def condensed(t):
ret = torch.empty_like(t).flatten()[0].clone().expand(t.shape)
assert ret.storage().size() == 1
# ret.storage()[0] = 0
return ret
def bundle_optional_dict_of_randn(template):
return torch.utils.bundled_inputs.InflatableArg(
value=(
None
if template is None
else {k: condensed(v) for (k, v) in template.items()}
),
fmt="{}",
fmt_fn="""
def {}(self, value: Optional[Dict[str, Tensor]]):
if value is None:
return None
output = {{}}
for k, v in value.items():
output[k] = torch.randn_like(v)
return output
""",
)
def bundle_optional_list_of_randn(template):
return torch.utils.bundled_inputs.InflatableArg(
value=(None if template is None else [condensed(v) for v in template]),
fmt="{}",
fmt_fn="""
def {}(self, value: Optional[List[Tensor]]):
if value is None:
return None
output = []
for v in value:
output.append(torch.randn_like(v))
return output
""",
)
out : List[str] = []
sm = torch.jit.script(MyModel())
original_size = model_size(sm)
small_inputs = (
bundle_optional_dict_of_randn(small_sample),
bundle_optional_list_of_randn(small_list),
torch.zeros([3, 4]),
)
big_inputs = (
bundle_optional_dict_of_randn(big_sample),
bundle_optional_list_of_randn(big_list),
torch.zeros([1 << 5, 1 << 8, 1 << 10]),
)
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
sm,
[
big_inputs,
small_inputs,
],
_receive_inflate_expr=out,
)
augmented_size = model_size(sm)
# assert the size has not increased more than 8KB
self.assertLess(augmented_size, original_size + (1 << 13))
loaded = save_and_load(sm)
inflated = loaded.get_all_bundled_inputs()
self.assertEqual(len(inflated[0]), len(small_inputs))
methods, _ = torch.utils.bundled_inputs._get_bundled_inputs_attributes_and_methods(
loaded
)
# One Function (forward)
# two bundled inputs (big_inputs and small_inputs)
# two args which have InflatableArg with fmt_fn
# 1 * 2 * 2 = 4
self.assertEqual(
sum([method.startswith("_inflate_helper") for method in methods]), 4
)
if __name__ == '__main__':
run_tests()