forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frozen_ops_to_mkldnn.cpp
1183 lines (1066 loc) · 40.7 KB
/
frozen_ops_to_mkldnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/Utils.h>
#include <ATen/core/symbol.h>
#include <ATen/native/layer_norm.h>
#include <c10/core/ScalarType.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/frozen_conv_folding.h>
#include <torch/csrc/jit/passes/frozen_ops_to_mkldnn.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator_options.h>
#include <torch/csrc/jit/tensorexpr/types.h>
// clang-format off
// moving ConvUtils include induces import cycle
#include <ATen/native/ConvUtils.h>
#include <algorithm>
#include <memory>
#include <ATen/core/stack.h>
#include <c10/core/Layout.h>
#include <c10/util/StringUtil.h>
#if AT_MKLDNN_ENABLED()
#include <ATen/CPUFunctions.h>
#include <dnnl_types.h>
#include <ATen/native/mkldnn/Utils.h>
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ideep.hpp>
#endif
// clang-format on
namespace torch {
namespace jit {
#if AT_MKLDNN_ENABLED()
using Tensor = at::Tensor;
namespace {
c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return AliasAnalysisKind::FROM_SCHEMA;
}
using ValueSet = std::unordered_set<Value*>;
using ValueSetPtr = std::shared_ptr<std::unordered_set<Value*>>;
Node* getLastUse(Value* v) {
auto last_use_node = v->node();
for (const auto& use : v->uses()) {
if (use.user->isAfter(last_use_node)) {
last_use_node = use.user;
}
}
return last_use_node;
}
void merge_sets(
std::unordered_map<Value*, ValueSetPtr>& alias_mapping,
Value* existing,
Value* new_v) {
if (alias_mapping[existing] == alias_mapping[new_v]) {
return;
}
auto existing_set = alias_mapping[existing];
auto set_to_remove = alias_mapping[new_v];
for (auto it = set_to_remove->begin(); it != set_to_remove->end(); it++) {
existing_set->insert(*it);
alias_mapping[*it] = existing_set;
}
}
// no uses of tensors in container types
void assertNonTensorTypeDoesNotContainTensors(TypePtr type) {
if (type->cast<TensorType>()) {
return;
}
for (const auto& t : type->containedTypes()) {
TORCH_INTERNAL_ASSERT(!t->cast<TensorType>());
}
}
void InplaceMKLDNNSubgraph(std::shared_ptr<Graph> graph) {
// This function first calculates aliasing sets,
// then calculates the last node each aliasing set is alive for.
// Then we go through each node, if it's a node which has an equivalent
// inplace node and the aliasing set for its input is dead afer this node, we
// inplace it. Then we merge the aliasing sets for the input and output of the
// node and extend the liveness of the set. To inplace a node you need to
// prove device and dtype of the input and output are the same, which we've
// already done, and prove that the output size is the same as the input size,
// which is achieved by explicit Broadcast nodes (which we inserted for other
// reasons).
// The graphs here are simple subgraphs without uses of Tensors in
// containers (Lists, GetAttrs, etc)
// CALCULATE ALIASING SETS
auto aliasDb = torch::make_unique<AliasDb>(graph);
// map from Value to its Aliasing Set
std::unordered_map<Value*, ValueSetPtr> alias_mapping;
ValueSet set;
ValueSetPtr input_set = std::make_shared<ValueSet>(set);
for (Value* v : graph->inputs()) {
if (v->type()->cast<TensorType>()) {
input_set->insert(v);
alias_mapping[v] = input_set;
} else {
assertNonTensorTypeDoesNotContainTensors(v->type());
}
}
for (Node* n : graph->nodes()) {
for (Value* output : n->outputs()) {
if (!output->type()->cast<TensorType>()) {
assertNonTensorTypeDoesNotContainTensors(output->type());
continue;
}
std::unordered_set<Value*> new_set = {output};
alias_mapping[output] = std::make_shared<ValueSet>(new_set);
for (Value* input : n->inputs()) {
if (aliasDb->mayAlias(input, output)) {
merge_sets(alias_mapping, input, output);
}
}
}
}
// CALCULATE ALIASING SET LIVENESS
// map from aliased set -> last use of set
std::unordered_map<ValueSetPtr, Node*> set_liveness;
for (auto& set : alias_mapping) {
if (set_liveness.count(set.second)) {
continue;
}
Node* last = nullptr;
for (const auto& v : *set.second) {
auto k = v->node()->kind();
if (k == prim::Constant || k == prim::ConstantMKLDNNTensor ||
k == prim::Param) {
last = graph->return_node();
continue;
}
auto last_use = getLastUse(v);
if (!last || last_use->isAfter(last)) {
last = last_use;
}
}
set_liveness[set.second] = last;
}
// REUSING MEMORY BY REINPLACING NODES
std::vector<Node*> nodes_to_inplace;
auto add_to_inplace_set = [&](Node* node) {
// defer making the inplacing change because that would invalidate the old
// Node output Value*
nodes_to_inplace.push_back(node);
TORCH_INTERNAL_ASSERT(node->outputs().size() == 1);
auto output_liveness_end =
set_liveness[alias_mapping[node->outputs().at(0)]];
merge_sets(alias_mapping, node->inputs().at(0), node->output());
set_liveness[alias_mapping[node->output()]] = output_liveness_end;
};
for (Node* node : graph->nodes()) {
auto k = node->kind();
if (k == aten::relu || k == aten::sigmoid || k == aten::dropout ||
k == prim::MKLDNNHardSwish || k == prim::MKLDNNHardSigmoid ||
k == prim::MKLDNNHardTanh || k == aten::tanh ||
k == prim::MKLDNNClamp || k == Symbol::prim("MKLDNNScalarMul") ||
k == Symbol::prim("MKLDNNLayerNorm")) {
if (set_liveness[alias_mapping[node->inputs().at(0)]]->isAfter(node)) {
continue;
}
add_to_inplace_set(node);
} else if (k == aten::mul || k == aten::add) {
// the binary operators (add/mul) are commutative and only take tensor
// inputs, so we can inplace either the first or second input
int64_t reusable_value_index = -1;
for (const auto i : c10::irange(2)) {
TORCH_INTERNAL_ASSERT(node->inputs().at(i)->type()->cast<TensorType>());
if (!set_liveness[alias_mapping[node->inputs().at(i)]]->isAfter(node)) {
reusable_value_index = i;
break;
}
}
if (reusable_value_index == -1) {
continue;
}
if (reusable_value_index == 1) {
node->insertInput(0, node->inputs().at(1));
node->removeInput(2);
}
add_to_inplace_set(node);
}
}
for (Node* node : nodes_to_inplace) {
node->replaceWithNewSymbol(
Symbol::fromQualString(node->schema().name() + "_"));
node->destroy();
}
}
// This is a factory function that creates an Operation that that takes
// MKLDNN tensors and unpacks them into 1D contiguous tensors that we can
// run aten operations on. The precondition for using this function is that the
// aten operations in `aten_op` should be an identity for zero inputs. In other
// words, this should: `aten_op(0) = 0` The reason for this precondition has to
// do with blocked formats MKLDNN uses to lay tensor elements (nChw8c, nChw16c,
// etc). It splits the channel dimension into chunks of 8/16 makes it the
// innermost dimension. Whenever the channel dim isn't divisible by 8/16 the
// innermost dimension is padded with 0s. The precondition, `aten_op(0) == 0`
// allows us to avoid any special casing of padded elements.
Operation createUnaryOp(
std::function<void(at::Tensor output, at::Tensor input)> aten_op,
bool inplace = false) {
return [aten_op, inplace](Stack& stack) {
auto a = pop(stack).toTensor();
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
// we cast `a` to an `ideep::tensor`, so we can get at its descriptor
// which we then use to set up `out` tensor w/ the same props as a
auto a_it = at::native::itensor_from_mkldnn(a);
auto mkldnn_raw_data = a_it.get_data_handle();
auto a_options_with_strided = a.options().layout(c10::kStrided);
// tensor's physical size could be bigger than a logical one
// `a_it.get_desc().get_size()` returns the real physical size (in bytes)
// we use it to compute `nelem` for `aten` ops
auto nelem = static_cast<int64_t>(
a_it.get_desc().get_size() / elementSize(a.scalar_type()));
// we also wrap `a` storage into an aten tensor
auto in_aten =
at::from_blob(mkldnn_raw_data, {nelem}, a_options_with_strided);
auto out_raw_data = mkldnn_raw_data;
auto out = a;
if (!inplace) {
// `a_it.get_desc()` will allocate a tensor
// of the right physical size.
auto it_empty = ideep::tensor(a_it.get_desc());
TORCH_INTERNAL_ASSERT(it_empty.get_desc() == a_it.get_desc());
out = at::native::new_with_itensor_mkldnn(
std::move(it_empty),
optTypeMetaToScalarType(a.options().dtype_opt()),
a.options().device_opt());
out_raw_data = at::native::itensor_from_mkldnn(out).get_data_handle();
}
TORCH_INTERNAL_ASSERT(
a_it.get_desc().get_size() % elementSize(a.scalar_type()) == 0);
auto out_aten = at::from_blob(
out_raw_data, {static_cast<int64_t>(nelem)}, a_options_with_strided);
aten_op(out_aten, in_aten);
push(stack, out);
};
}
void MKLDNNLayerNormOp(Stack& stack, bool inplace) {
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
// enable_cudnn not used
pop(stack);
auto eps = pop(stack).toDouble();
Tensor bias{};
Tensor weight{};
auto bias_ival = pop(stack);
TORCH_INTERNAL_ASSERT(bias_ival.isTensor());
bias = bias_ival.toTensor();
auto weight_ival = pop(stack);
TORCH_INTERNAL_ASSERT(weight_ival.isTensor());
weight = weight_ival.toTensor();
auto shape = pop(stack).toDimVector();
auto input = pop(stack).toTensor();
at::Tensor dst, mean, rstd;
std::tie(dst, mean, rstd) =
at::native::mkldnn_layer_norm_last_index_weight_bias_f32(
input, shape, weight, bias, eps, inplace);
push(stack, dst);
};
Operation BroadOp(const Node* node) {
return [](Stack& stack) {
auto b = pop(stack).toTensor();
auto a = pop(stack).toTensor();
auto b_size = b.sizes();
auto a_size = a.sizes();
if (a_size.equals(b_size)) {
// TODO: follow up with MKLDNN what the best way is
// to handle perf incompatible formats
push(stack, a, b);
return;
} else {
auto out_size = at::infer_size(a_size, b_size);
int64_t out_numel = out_size[0];
for (size_t i = 1, end = out_size.size(); i < end; ++i) {
out_numel = out_numel * out_size[i];
}
auto exp_a = a;
auto exp_b = b;
int stacked = 0;
// mkldnn tensors only support reshape, not expand or view operators
if (a_size.equals(out_size)) {
push(stack, a);
++stacked;
} else if (out_numel == a.numel()) {
exp_a = a.reshape(out_size);
} else {
// TODO: consider to initializing to a blocked layout
// directly if needed
exp_a = a.to_dense().expand(out_size).to_mkldnn();
}
if (b_size.equals(out_size)) {
push(stack, b);
++stacked;
} else if (out_numel == b.numel()) {
exp_b = b.reshape(out_size);
} else {
exp_b = b.to_dense().expand(out_size).to_mkldnn();
}
if (stacked < 2) {
if (stacked == 1) {
pop(stack);
}
// If one of the inputs was expanded and converted to nchw/nhwc
// we might end up in a very bad spot if the second argument
// is in a blocked format. In this case, MKLDNN uses its
// reference implementation for a binary operation that follows
// these broadcasts and it could be up to ~100x slower.
// We use a very simple heuristic to convert an arg in nchw
// to the blocked format of the other argument.
c10::impl::ExcludeDispatchKeyGuard edkg(c10::autograd_dispatch_keyset);
auto a_it = at::native::itensor_from_mkldnn(exp_a);
auto b_it = at::native::itensor_from_mkldnn(exp_b);
// `is_public_format` means a tensor's physical layout isn't in MKLDNN
// blocked layout e.g. nchw or nhwc but not nChw8c
if (!a_it.is_public_format()) {
if (b_it.is_public_format()) {
b_it = b_it.reorder_if_differ_in(a_it.get_desc());
}
} else if (!b_it.is_public_format()) {
if (a_it.is_public_format()) {
a_it = a_it.reorder_if_differ_in(b_it.get_desc());
}
}
auto a_options = exp_a.options();
auto a_out = at::native::new_with_itensor_mkldnn(
std::move(a_it),
optTypeMetaToScalarType(a_options.dtype_opt()),
a_options.device_opt());
push(stack, a_out);
auto b_options = exp_b.options();
auto b_out = at::native::new_with_itensor_mkldnn(
std::move(b_it),
optTypeMetaToScalarType(b_options.dtype_opt()),
b_options.device_opt());
push(stack, b_out);
};
}
};
}
static std::function<void(at::Tensor output, at::Tensor input)> hardtanh_helper(
const Node* n) {
auto min_val = n->f(attr::min_val);
auto max_val = n->f(attr::max_val);
return [min_val, max_val](at::Tensor output, at::Tensor input) {
at::cpu::hardtanh_out(output, input, min_val, max_val);
};
}
static std::function<void(at::Tensor output, at::Tensor input)> clamp_helper(
const Node* n) {
auto min_val = n->f(attr::min_val);
auto max_val = n->f(attr::max_val);
return [min_val, max_val](at::Tensor output, at::Tensor input) {
at::cpu::clamp_out(output, input, min_val, max_val);
};
}
// any op added to this registry needs to meet
// the precondition: `aten_op(0) == 0`
const RegisterOperators MKLDNNHardSwishOpReg({
torch::jit::Operator(
"prim::MKLDNNHardSwish_(Tensor(a!) self) -> Tensor(a!)",
createUnaryOp(
[](at::Tensor output, at::Tensor input) {
at::cpu::hardswish_out(output, input);
},
true),
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNHardSigmoid_(Tensor(a!) self) -> Tensor(a!)",
createUnaryOp(
[](at::Tensor output, at::Tensor input) {
at::cpu::hardsigmoid_out(output, input);
},
true),
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNHardTanh_(Tensor(a!) self) -> Tensor(a!)",
[](const Node* n) -> Operation {
return createUnaryOp(hardtanh_helper(n), true);
},
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNClamp_(Tensor(a!) self) -> Tensor(a!)",
[](const Node* n) -> Operation {
return createUnaryOp(clamp_helper(n), true);
},
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNHardSwish(Tensor a) -> Tensor",
createUnaryOp(
[](at::Tensor output, at::Tensor input) {
at::cpu::hardswish_out(output, input);
},
false),
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNHardSigmoid(Tensor a) -> Tensor",
createUnaryOp(
[](at::Tensor output, at::Tensor input) {
at::cpu::hardsigmoid_out(output, input);
},
false),
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNHardTanh(Tensor self) -> Tensor",
[](const Node* n) -> Operation {
return createUnaryOp(hardtanh_helper(n), false);
},
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNClamp(Tensor self) -> Tensor",
[](const Node* n) -> Operation {
return createUnaryOp(clamp_helper(n), false);
},
AliasAnalysisKind::FROM_SCHEMA),
});
const RegisterOperators BroadOpReg({
torch::jit::Operator(
prim::BroadcastMKLDNNTensors,
BroadOp,
AliasAnalysisKind::INTERNAL_SPECIAL_CASE),
});
const RegisterOperators MKLDNNLayerNormOpReg({
torch::jit::Operator(
"prim::MKLDNNLayerNorm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor",
[](Stack& stack) { MKLDNNLayerNormOp(stack, false); },
AliasAnalysisKind::FROM_SCHEMA),
torch::jit::Operator(
"prim::MKLDNNLayerNorm_(Tensor(a!) input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor(a!)",
[](Stack& stack) { MKLDNNLayerNormOp(stack, true); },
AliasAnalysisKind::FROM_SCHEMA),
});
Operation ConstantMKLDNNTensorOp(const Node* node) {
const auto& t = node->t(attr::value);
return [t](Stack& stack) {
push(stack, t);
return 0;
};
}
Tensor mkldnn_tensor_scalar_mul(Tensor& tensor, Tensor& out, float scalar) {
ideep::tensor& x = at::native::itensor_from_mkldnn(tensor);
ideep::tensor& z = at::native::itensor_from_mkldnn(out);
ideep::eltwise_forward::compute(
x,
z,
ideep::algorithm::eltwise_linear,
ideep::prop_kind::forward_inference,
/*alpha*/ scalar);
return out;
}
// aten::convolution does a lot of precomputation and dispatching before
// mkldnn_convolution is called. registering here we can directly invoke the op
// and avoid overhead. avoiding dispatch overhead for other operators - relu,
// add, etc - did not benchmark as speeding up models noticeably. the additional
// overhead of `convolution` warrants the custom operator.
jit::RegisterOperators reg_fut_ops({
jit::Operator(
// XXX: this follows the schema convention of conv2d/conv3d, not
// aten::mkldnn_convolution, which is different for some reason!
"prim::mkldnn_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, int groups) -> Tensor",
[](jit::Stack& stack) {
int64_t groups = pop(stack).toInt();
auto dilation = pop(stack).toIntVector();
auto padding = pop(stack).toIntVector();
auto stride = pop(stack).toIntVector();
Tensor bias;
IValue bias_ival = pop(stack);
if (!bias_ival.isNone()) {
bias = bias_ival.toTensor();
}
Tensor weight = pop(stack).toTensor();
Tensor input = pop(stack).toTensor();
at::AutoDispatchBelowAutograd mode;
// aten::convolution takes care of 0 dim case before calls into
// backends
if (input.size(0) == 0) {
std::vector<int64_t> o = at::native::conv_output_size(
input.sizes(), weight.sizes(), padding, stride, dilation);
push(
stack,
at::native::empty_mkldnn(
o,
optTypeMetaToScalarType(input.options().dtype_opt()),
input.options().layout_opt(),
input.options().device_opt(),
input.options().pinned_memory_opt()));
return;
}
// aten::convolution also checks dtype mismatches
TORCH_CHECK(
input.options().type_equal(weight.options()),
"Input type (",
input.toString(),
") and weight type (",
weight.toString(),
") should be the same");
push(
stack,
at::native::mkldnn_convolution(
input, weight, bias, padding, stride, dilation, groups));
},
aliasAnalysisFromSchema()),
// registering as custom operators avoids Scalar->Tensor->Scalar conversion
// in default bindings
jit::Operator(
"prim::MKLDNNScalarMul(Tensor self, Scalar other) -> Tensor",
[](jit::Stack& stack) {
c10::impl::ExcludeDispatchKeyGuard edkg(
c10::autograd_dispatch_keyset);
float other = pop(stack).toScalar().toFloat();
Tensor self = pop(stack).toTensor();
auto out = at::native::empty_mkldnn(
self.sizes(),
optTypeMetaToScalarType(self.options().dtype_opt()),
self.options().layout_opt(),
self.options().device_opt(),
self.options().pinned_memory_opt());
mkldnn_tensor_scalar_mul(self, out, other);
push(stack, out);
},
aliasAnalysisFromSchema()),
jit::Operator(
"prim::MKLDNNScalarMul_(Tensor(a!) self, Scalar other) -> Tensor(a!)",
[](jit::Stack& stack) {
c10::impl::ExcludeDispatchKeyGuard edkg(
c10::autograd_dispatch_keyset);
float other = pop(stack).toScalar().toFloat();
Tensor self = pop(stack).toTensor();
mkldnn_tensor_scalar_mul(self, self, other);
push(stack, self);
},
aliasAnalysisFromSchema()),
});
// This is registered as its own op instead of as prim::Constant bc it does not
// serialize which is an invariant of prim::Constant
// TODO: make mkldnn tensor serialize...
const RegisterOperators MKLDNNConstantOp({
torch::jit::Operator(
prim::ConstantMKLDNNTensor,
ConstantMKLDNNTensorOp,
AliasAnalysisKind::INTERNAL_SPECIAL_CASE),
});
Node* createConstantMKLDNNTensorOp(Graph* g, const Tensor& mkldnn_tensor) {
TORCH_INTERNAL_ASSERT(mkldnn_tensor.is_mkldnn());
auto op = g->create(prim::ConstantMKLDNNTensor);
op->t_(attr::value, mkldnn_tensor);
return op;
}
bool supportedMKLDNNWeight(const Tensor& weight) {
return weight.device().is_cpu() && weight.dtype() == c10::ScalarType::Float &&
weight.ndimension() != 0;
}
void replaceInputWithMKLDNNTensor(Node* n, size_t index) {
Value* input = n->inputs().at(index);
auto mkldnn_tensor = constant_as<Tensor>(input)->to_mkldnn();
auto mkldnn_tensor_value =
createConstantMKLDNNTensorOp(n->owningGraph(), mkldnn_tensor)
->insertBefore(n)
->output();
mkldnn_tensor_value->setDebugName(input->debugName() + "_mkldnn");
n->replaceInputWith(input, mkldnn_tensor_value);
}
void replaceInputWithMKLDNNTensor(
Node* n,
const std::string& name,
const at::Tensor& mkldnn_tensor) {
Value* input = n->namedInput(name);
auto mkldnn_tensor_value =
createConstantMKLDNNTensorOp(n->owningGraph(), mkldnn_tensor)
->insertBefore(n)
->output();
mkldnn_tensor_value->setDebugName(input->debugName() + "_mkldnn");
n->replaceInputWith(input, mkldnn_tensor_value);
}
void replaceInputWithMKLDNNTensor(Node* n, const std::string& name) {
Value* input = n->namedInput(name);
auto mkldnn_tensor = constant_as<Tensor>(input)->to_mkldnn();
replaceInputWithMKLDNNTensor(n, name, mkldnn_tensor);
}
void moveConvWeightsToMKLDNN(Node* conv) {
auto conv_w_mkldnn =
constant_as<Tensor>(conv->namedInput("weight")).value().to_mkldnn();
std::vector<int64_t> padding =
toIValue(conv->namedInput("padding"))->toIntVector();
std::vector<int64_t> stride =
toIValue(conv->namedInput("stride"))->toIntVector();
std::vector<int64_t> dilation =
toIValue(conv->namedInput("dilation"))->toIntVector();
auto groups = constant_as<int64_t>(conv->namedInput("groups")).value();
if (conv->kind() == aten::conv2d) {
conv_w_mkldnn = mkldnn_reorder_conv2d_weight(
conv_w_mkldnn, padding, stride, dilation, groups);
} else if (conv->kind() == aten::conv3d) {
conv_w_mkldnn = mkldnn_reorder_conv3d_weight(
conv_w_mkldnn, padding, stride, dilation, groups);
} else {
TORCH_INTERNAL_ASSERT(false);
}
replaceInputWithMKLDNNTensor(conv, "weight", conv_w_mkldnn);
if (conv->namedInput("bias")->type() != NoneType::get()) {
replaceInputWithMKLDNNTensor(conv, "bias");
}
}
void moveWeightsToMKLDNN(Node* n) {
// conv goes through special pathway so we can call mkldnn reorder conv
// primitive
if (n->kind() == aten::conv2d || n->kind() == aten::conv3d) {
moveConvWeightsToMKLDNN(n);
} else {
for (size_t i = 0; i < n->inputs().size(); ++i) {
if (!n->input(i)->type()->cast<TensorType>() ||
n->input(i)->node()->kind() != prim::Constant) {
continue;
}
replaceInputWithMKLDNNTensor(n, i);
}
}
}
static void clamp_node_creator(
Node* body_node,
c10::Symbol kind,
double min_val,
double max_val) {
WithInsertPoint insert_guard{body_node};
auto out_node =
body_node->owningGraph()->create({kind}, {body_node->input(0)}, 1);
// N.B. we can't use `insert` as it calls `getOperation` (via
// `emitBuiltinCall`) which uses `min_val` and `max_val` attrs which we
// haven't set yet.
body_node->owningGraph()->insertNode(out_node);
auto out_val = out_node->output();
out_node->f_(attr::min_val, min_val);
out_node->f_(attr::max_val, max_val);
out_val->copyMetadata(body_node->output());
body_node->output()->replaceAllUsesWith(out_val);
body_node->destroy();
}
void ComputeSubgraphInMKLDNN(Node* subgraph_node) {
auto graph = subgraph_node->owningGraph();
Value* none_value = nullptr;
{
WithInsertPoint guard(subgraph_node);
none_value = graph->insertConstant(IValue());
}
for (size_t i = 0; i < subgraph_node->inputs().size(); ++i) {
Value* v = subgraph_node->inputs().at(i);
if (!v->type()->cast<TensorType>()) {
continue;
}
auto to_mkldnn =
graph->create(c10::Symbol::fromQualString("aten::to_mkldnn"), 1)
->insertBefore(subgraph_node);
to_mkldnn->addInput(v);
to_mkldnn->addInput(none_value);
subgraph_node->replaceInput(i, to_mkldnn->output());
}
for (size_t i = 0; i < subgraph_node->outputs().size(); ++i) {
Value* v = subgraph_node->outputs().at(i);
if (!v->type()->cast<TensorType>()) {
continue;
}
auto from_mkldnn =
graph
->create(
c10::Symbol::fromQualString("aten::to_dense"), {v, none_value})
->insertAfter(subgraph_node);
v->replaceAllUsesAfterNodeWith(from_mkldnn, from_mkldnn->output());
}
auto subgraph = SubgraphUtils::getSubgraph(subgraph_node);
for (auto it = subgraph->block()->nodes().begin();
it != subgraph->block()->nodes().end();) {
Node* body_node = *it;
it++;
moveWeightsToMKLDNN(body_node);
if (body_node->kind() == aten::add ||
(body_node->kind() == aten::mul &&
body_node->input(1)->type()->cast<TensorType>())) {
auto node = body_node->owningGraph()->create(
Symbol::prim("BroadcastMKLDNNTensors"),
{body_node->inputs().at(0), body_node->inputs().at(1)},
2);
node->insertBefore(body_node);
body_node->replaceInput(0, node->outputs().at(0));
body_node->replaceInput(1, node->outputs().at(1));
}
if (body_node->kind() == aten::mul &&
body_node->input(1)->type()->isSubtypeOf(*NumberType::get())) {
body_node->replaceWithNewSymbol(Symbol::prim("MKLDNNScalarMul"));
body_node->destroy();
continue;
}
if (body_node->matches(
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor")) {
body_node->replaceWithNewSymbol(Symbol::prim("MKLDNNLayerNorm"));
body_node->destroy();
continue;
}
if (body_node->kind() == aten::hardswish) {
body_node->replaceWithNewSymbol(prim::MKLDNNHardSwish);
body_node->destroy();
continue;
}
if (body_node->kind() == aten::hardsigmoid) {
body_node->replaceWithNewSymbol(prim::MKLDNNHardSigmoid);
body_node->destroy();
continue;
}
if (body_node->kind() == aten::relu6) {
clamp_node_creator(body_node, prim::MKLDNNHardTanh, 0., 6.);
continue;
}
if (body_node->kind() == aten::hardtanh) {
auto min_val =
constant_as<double>(body_node->namedInput("min_val")).value();
auto max_val =
constant_as<double>(body_node->namedInput("max_val")).value();
clamp_node_creator(body_node, prim::MKLDNNHardTanh, min_val, max_val);
continue;
}
if (body_node->kind() == aten::clamp) {
auto min_val = constant_as<double>(body_node->namedInput("min")).value();
auto max_val = constant_as<double>(body_node->namedInput("max")).value();
clamp_node_creator(body_node, prim::MKLDNNClamp, min_val, max_val);
continue;
}
if (body_node->kind() == aten::conv2d ||
body_node->kind() == aten::conv3d) {
// this node doesnt handle string padding yet...
if (!body_node->namedInput("padding")->type()->cast<StringType>()) {
body_node->replaceWithNewSymbol(Symbol::prim("mkldnn_convolution"));
body_node->destroy();
continue;
}
}
}
}
bool nonConstantParameters(Node* n) {
for (size_t i = 1; i < n->inputs().size(); i++) {
if (n->inputs().at(i)->node()->kind() != prim::Constant) {
return true;
}
}
return false;
}
bool frozenMkldnnCompatibleLinearNode(Node* n) {
if (nonConstantParameters(n)) {
return false;
}
if (n->kind() != aten::linear) {
return false;
}
auto weight = constant_as<Tensor>(n->namedInput("weight")).value();
return supportedMKLDNNWeight(weight);
}
bool frozenMkldnnCompatibleConvNode(Node* n) {
if (nonConstantParameters(n)) {
return false;
}
// mkldnn does not support conv1d
// _convolution is rewritten before this pass is invoked
if (n->kind() != aten::conv2d && n->kind() != aten::conv3d) {
return false;
}
auto weight = constant_as<Tensor>(n->namedInput("weight")).value();
return supportedMKLDNNWeight(weight);
}
// [mkldnn perf strategy]
// Certain ops - aten::linear, aten::conv2d, aten::conv3d - provide a huge speed
// up just by converting the constant weights to MKLDNN AOT, and then at runtime
// converting the non-constant input to_mkldnn before the op, and then back to
// its original layout after the op. The speed up holds even if you end up
// converting the input to_mkldnn and output back to_dense. We start groups of
// ops to compute in MKLDNN only from these ops that are a strict speedup. Then,
// we expand the groups to include operators which are computable in MKLDNN &
// are roughly perf equal to eager. We do this in the hopes of joining multiple
// fast nodes together, saving to_mkldnn and to_dense conversions.
//
// MKLDNN only supports float32 inputs for aten::linear, aten::conv2d &
// aten::conv3d. We only fuse these nodes if the weights are float32, and then
// we only include operators which we can prove will execute in float32. By
// fusing topologically we can maintain the invariant that all tensor types in
// the graph are floating point. In fusing Conv-> Add -> Relu -> Conv we start
// with the first Conv, know that the output is float, and can then safely merge
// Add and Relu. If we started with the last Conv, it would be difficult to
// prove in our first pass that the Add's inputs were both float32 without first
// fusing the first conv.
class MKLDNNSubgraphSlicer {
public:
MKLDNNSubgraphSlicer(
Block* block,
std::shared_ptr<Graph> graph,
AliasDb& aliasDb)
: block_(block), graph_(std::move(graph)), aliasDb_(aliasDb) {}
void run() {
// We maintain alias db correctness in-place while building up the autodiff
// subgraphs, however it is difficult to preserve correctness when
// un-inlining autodiff subgraphs. We first recursively construct all
// subgraphs and then unmerge them into the graph
buildupSubgraphs();
computeSubgraphsInMKLDNN();
// Run CSE globally onceto eliminate duplicates that may have occurred
// while inlining subgraphs.
EliminateCommonSubexpression(graph_);
}
void buildupSubgraphs() {
// We need to run the slicer multiple times in order to get all merge
// opportunities. This is because moveBeforeTopologicalValid may reorder
// nodes to be AFTER the current iteration point. In order to properly
// consider those nodes for merging, we need run the pass until no changes
// have been made.
//
// Example:
// c = f(a, b)
// d = f(c)
// e = f(d) <- iter is here, moving upward
// After c.moveBeforeTopologicallyValid(e), we have:
// c = f(a, b)
// e = f(d) <- iter still here
// d = f(c) <- this was node moved on the other side.
bool any_changed = true;
while (any_changed) {
any_changed = false;
for (auto it = block_->nodes().begin(); it != block_->nodes().end();) {
bool changed = false;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
// Construct Subgraphs Recursively
for (Node* n : block_->nodes()) {
for (auto subBlock : n->blocks()) {
MKLDNNSubgraphSlicer(subBlock, graph_, aliasDb_).buildupSubgraphs();
}
}
}
static bool MKLDNNGroupStart(Node* node) {
// if we're already in the process of merging
if (node->kind() == prim::MKLDNNGroup) {
return true;
}
// see [mkldnn perf strategy]
return frozenMkldnnCompatibleConvNode(node);
}
private:
// MKLDNN only supports floats of dimension > 0, so we only support
// Tensors who have a known type or were previously verified
// to be usable in an MKLDNN Group
bool tensorInputIsMKLDNNSupported(Value* v, Node* v_use) {
auto const_tensor = constant_as<Tensor>(v);
if (const_tensor) {
return supportedMKLDNNWeight(*const_tensor);
}
auto k = v->node()->kind();
if (k == prim::MKLDNNGroup || k == prim::ConstantMKLDNNTensor ||
k == aten::to_mkldnn) {
return true;
}
for (const auto& use : v->uses()) {
if (use.user->kind() == aten::to_mkldnn &&
v_use->owningBlock() == use.user->owningBlock()) {
return true;
}
}
return false;
}
// We include ops here which are roughly perf-equivalent in mkldnn as with
// aten (single & multithreaded) and whose inputs & outputs are float32.
bool computableInMKLDNN(Node* n) {
for (Value* v : n->inputs()) {
if (v->type()->cast<TensorType>() &&
!(tensorInputIsMKLDNNSupported(v, n))) {
return false;
}
}
if (n->matches(
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor") &&
n->namedInput("weight")->type() != NoneType::get() &&
n->namedInput("bias")->type() != NoneType::get()) {
auto norm_shape =
constant_as<std::vector<int64_t>>(n->namedInput("normalized_shape"));
return norm_shape.has_value() && norm_shape->size() == 1;
}
// unary ops we dont need to prove anything else than
// the input is mkldnn supported
switch (n->kind()) {
case aten::relu:
case aten::relu6:
case aten::gelu:
case aten::prelu:
case aten::sigmoid:
case aten::hardsigmoid:
case aten::hardswish:
case aten::tanh:
case aten::batch_norm:
case aten::max_pool2d: