forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flatbuffer_serializer.cpp
833 lines (736 loc) · 28.4 KB
/
flatbuffer_serializer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#include <torch/csrc/jit/serialization/flatbuffer_serializer.h>
#ifdef FLATBUFFERS_VERSION_MAJOR
#error "flatbuffer_serializer.h must not include any flatbuffers headers"
#endif // FLATBUFFERS_VERSION_MAJOR
#include <fstream>
#include <functional>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <ATen/ATen.h>
#include <c10/core/CPUAllocator.h>
#include <c10/util/Exception.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/mobile/code.h>
#include <torch/csrc/jit/mobile/train/export_data.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/instruction.h>
#if defined(FB_XPLAT_BUILD) || defined(FBCODE_CAFFE2)
#include <torch/csrc/jit/serialization/mobile_bytecode_generated_fbsource.h> // NOLINT
namespace flatbuffers = flatbuffers_fbsource;
#define FLATBUFFERS_MAX_ALIGNMENT FLATBUFFERS_FBSOURCE_MAX_ALIGNMENT
#else
#include <torch/csrc/jit/serialization/mobile_bytecode_generated.h> // NOLINT
#endif
namespace torch::jit {
using flatbuffers::FlatBufferBuilder;
using mobile::serialization::CreateArg;
using mobile::serialization::CreateDebugInfo;
using mobile::serialization::CreateDict;
using mobile::serialization::CreateFunctionDirect;
using mobile::serialization::CreateIValue;
using mobile::serialization::CreateList;
using mobile::serialization::CreateModule;
using mobile::serialization::CreateObject;
using mobile::serialization::CreateOperator;
using mobile::serialization::CreateTensorMetadataDirect;
using mobile::serialization::CreateTupleDirect;
namespace {
// TODO: remove once caffe2::kProducedBytecodeVersion is >= 9 and flatbuffer is
// launched.
constexpr uint32_t kMinVersion = 9;
// We will store IValue NONE in index 0 in flatbuffer.
constexpr int kNoneIndex = 0;
static TypePtr realType(TypePtr type) {
if (auto dyn = type->castRaw<c10::DynamicType>()) {
return dyn->fallback();
} else {
return type;
}
}
auto print_type(const c10::Type& t) -> c10::optional<std::string> {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return namedType->name().value().qualifiedName();
}
if (auto dyn = t.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str();
}
return c10::nullopt;
}
class FlatbufferSerializer {
public:
FlatbufferSerializer() = default;
flatbuffers::DetachedBuffer serializeModule(
const mobile::Module& module,
bool include_tensor_data_in_flatbuffer,
const ExtraFilesMap& extra_files = ExtraFilesMap(),
const ExtraFilesMap& jit_sources = ExtraFilesMap(),
const std::vector<IValue>& jit_constants = {});
private:
template <typename It>
std::vector<uint32_t> storeIValuesAndGetIndexes(
flatbuffers::FlatBufferBuilder& fbb,
It begin,
It end) {
std::vector<uint32_t> indexes;
for (; begin != end; ++begin) {
indexes.push_back(storeIValueAndGetIndex(fbb, *begin));
}
return indexes;
}
flatbuffers::Offset<mobile::serialization::Tuple> tupleToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& tuple);
flatbuffers::Offset<mobile::serialization::List> listToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list);
flatbuffers::Offset<mobile::serialization::Dict> dictToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list);
flatbuffers::Offset<mobile::serialization::Object> objectToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<mobile::serialization::TensorMetadata> tensorToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<mobile::serialization::Function> functionToFB(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& func);
flatbuffers::Offset<mobile::serialization::IValue> iValueToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
flatbuffers::Offset<jit::mobile::serialization::Schema> CreateFBSchema(
flatbuffers::FlatBufferBuilder& fbb,
const std::vector<Argument>& args,
const std::vector<Argument>& returns,
c10::TypePrinter type_printer);
flatbuffers::Offset<mobile::serialization::ObjectType> classTypeToFB(
flatbuffers::FlatBufferBuilder& fbb,
ClassTypePtr class_ptr);
uint32_t storeIValueAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue);
uint32_t storeFunctionAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& function);
uint32_t storeClassTypeAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
ClassTypePtr class_type);
flatbuffers::Offset<flatbuffers::Vector<
flatbuffers::Offset<mobile::serialization::ExtraFile>>>
storeExtraFilesAndGetOffset(
FlatBufferBuilder& fbb,
const ExtraFilesMap& extra_files);
uint32_t insertIValue(
flatbuffers::Offset<mobile::serialization::IValue> ivalue) {
uint32_t size = ivalue_offsets_.size();
ivalue_offsets_.push_back(ivalue);
return size;
}
std::vector<at::Tensor> tensor_data_;
std::unordered_map<const void*, uint32_t> memoized_storage_map_;
std::vector<flatbuffers::Offset<mobile::serialization::IValue>>
ivalue_offsets_;
std::vector<flatbuffers::Offset<mobile::serialization::ObjectType>>
obj_types_offset_;
// qualified name to serialized class, type or function
std::unordered_map<std::string, uint32_t> qn_to_serialized_values_;
// cache of some ivalues
struct IValueHash {
size_t operator()(const IValue& val) const {
return IValue::hash(val);
}
};
std::unordered_map<IValue, uint32_t, IValueHash> cached_ivalues_;
const mobile::CompilationUnit* mcu_ = nullptr;
};
flatbuffers::Offset<jit::mobile::serialization::Schema> FlatbufferSerializer::
CreateFBSchema(
flatbuffers::FlatBufferBuilder& fbb,
const std::vector<Argument>& args,
const std::vector<Argument>& returns,
c10::TypePrinter type_printer) {
std::vector<flatbuffers::Offset<jit::mobile::serialization::Arg>> arg_vec;
arg_vec.reserve(args.size());
std::vector<flatbuffers::Offset<jit::mobile::serialization::Arg>> return_vec;
return_vec.reserve(returns.size());
for (const auto& arg : args) {
int index = storeIValueAndGetIndex(fbb, arg.default_value());
arg_vec.emplace_back(CreateArg(
fbb,
fbb.CreateSharedString(arg.name()),
fbb.CreateSharedString(
realType(arg.type())->annotation_str(type_printer)),
index));
}
for (const auto& ret : returns) {
int index = storeIValueAndGetIndex(fbb, ret.default_value());
return_vec.emplace_back(CreateArg(
fbb,
fbb.CreateSharedString(ret.name()),
fbb.CreateSharedString(
realType(ret.type())->annotation_str(type_printer)),
index));
}
return CreateSchema(
fbb, fbb.CreateVector(arg_vec), fbb.CreateVector(return_vec));
}
flatbuffers::Offset<mobile::serialization::Function> FlatbufferSerializer::
functionToFB(
FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& func) {
const auto& code = func.get_code();
// instructions
std::vector<mobile::serialization::Instruction> instruction_vector;
instruction_vector.reserve(code.instructions_.size());
for (const auto& inst : code.instructions_) {
instruction_vector.emplace_back(inst.op, inst.N, inst.X);
}
// operators
std::vector<flatbuffers::Offset<mobile::serialization::Operator>>
operator_vector;
operator_vector.reserve(code.op_names_.size());
for (int i = 0; i < code.op_names_.size(); ++i) {
const auto& opname = code.op_names_[i];
const int op_size = code.operator_input_sizes_[i];
operator_vector.push_back(CreateOperator(
fbb,
fbb.CreateSharedString(opname.name),
fbb.CreateSharedString(opname.overload_name),
op_size));
}
const auto& constants = code.constants_;
std::vector<uint32_t> constant_indexes;
constant_indexes.reserve(constants.size());
for (const auto& constant : constants) {
constant_indexes.push_back(storeIValueAndGetIndex(fbb, constant));
}
// types
static const std::string torch_prefix("__torch__");
static const std::string class_prefix("__torch__.torch.classes");
std::vector<flatbuffers::Offset<flatbuffers::String>> type_offsets;
for (const TypePtr& t : code.types_) {
auto type_str = realType(t)->annotation_str();
if (type_str.find(torch_prefix) == 0) {
TORCH_CHECK(
type_str.find(class_prefix) == 0,
"__torch__ types other than custom c++ classes (__torch__.torch.classes)"
"are not supported in lite interpreter. ",
"Workaround: instead of using arbitrary class type (class Foo()), ",
"define a pytorch class (class Foo(torch.nn.Module)).");
}
type_offsets.push_back(fbb.CreateSharedString(type_str));
}
// since the register location is embedded into the bytecode, pass the
// register size
auto register_size = static_cast<int>(code.register_size_);
// schema
auto type_printer = [&](const c10::Type& t) -> c10::optional<std::string> {
auto namedType = t.cast<c10::NamedType>();
if (namedType && namedType->name()) {
return namedType->name().value().qualifiedName();
}
if (auto dyn = t.castRaw<c10::DynamicType>()) {
return dyn->fallback()->annotation_str();
}
return c10::nullopt;
};
flatbuffers::Offset<mobile::serialization::Schema> schema_offset = 0;
uint32_t class_index = 0;
if (func.hasSchema()) {
const auto& schema = func.getSchema();
TORCH_CHECK(
schema.overload_name().empty(), // @TODO: is this check correct?
"Overloads are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_vararg(),
"Python *args are not supported in mobile modules.");
TORCH_CHECK(
!schema.is_varret(),
"A variable number of return values is not supported in mobile modules.");
schema_offset =
CreateFBSchema(fbb, schema.arguments(), schema.returns(), type_printer);
auto classtype = schema.arguments()[0].type()->cast<ClassType>();
class_index = storeClassTypeAndGetIndex(fbb, classtype);
}
auto debug_info_offset =
CreateDebugInfo(fbb, fbb.CreateVector(code.debug_handles_));
auto function_offset = CreateFunctionDirect(
fbb,
qn.c_str(),
&instruction_vector,
&operator_vector,
&constant_indexes,
&type_offsets,
register_size,
schema_offset,
debug_info_offset,
class_index);
return function_offset;
}
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<mobile::serialization::ExtraFile>>>
FlatbufferSerializer::storeExtraFilesAndGetOffset(
FlatBufferBuilder& fbb,
const ExtraFilesMap& extra_files) {
std::vector<flatbuffers::Offset<mobile::serialization::ExtraFile>>
extra_file_offsets;
for (const auto& extra_file : extra_files) {
flatbuffers::Offset<mobile::serialization::ExtraFile> extra_file_offset =
mobile::serialization::CreateExtraFile(
fbb,
fbb.CreateSharedString(extra_file.first),
fbb.CreateString(extra_file.second));
extra_file_offsets.emplace_back(extra_file_offset);
}
return fbb.CreateVector(extra_file_offsets);
}
flatbuffers::DetachedBuffer FlatbufferSerializer::serializeModule(
const mobile::Module& module,
bool include_tensor_data_in_flatbuffer,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
FlatBufferBuilder fbb;
mcu_ = &module.compilation_unit();
// first element is None.
insertIValue(CreateIValue(fbb, mobile::serialization::IValueUnion::NONE, 0));
auto methods = module.get_methods();
std::vector<uint32_t> functions_index;
functions_index.reserve(methods.size());
for (const auto& method : methods) {
auto func_offset = storeFunctionAndGetIndex(
fbb, method.function().qualname().qualifiedName(), method.function());
functions_index.push_back(func_offset);
}
auto functions_offset = fbb.CreateVector(functions_index);
uint32_t ivalue_index = storeIValueAndGetIndex(fbb, module._ivalue());
flatbuffers::Offset<flatbuffers::Vector<
flatbuffers::Offset<mobile::serialization::StorageData>>>
storage_data_offset = 0;
auto extra_files_offset = storeExtraFilesAndGetOffset(fbb, extra_files);
auto jit_source_offset = storeExtraFilesAndGetOffset(fbb, jit_sources);
std::vector<uint32_t> jit_constants_indexes;
jit_constants_indexes.reserve(jit_constants.size());
const uint32_t mobile_ivalue_size = ivalue_offsets_.size();
for (const auto& ival : jit_constants) {
jit_constants_indexes.emplace_back(storeIValueAndGetIndex(fbb, ival));
}
const uint32_t operator_version =
static_cast<uint32_t>(module.min_operator_version());
uint32_t bytecode_version = static_cast<uint32_t>(module.bytecode_version());
if (bytecode_version < kMinVersion) {
bytecode_version = kMinVersion;
}
// NOTE: saving of storage has to be the last thing to do.
if (include_tensor_data_in_flatbuffer) {
std::vector<flatbuffers::Offset<mobile::serialization::StorageData>>
storage_data;
for (auto td : tensor_data_) {
if (td.storage().device_type() != DeviceType::CPU) {
td = at::empty({0}, td.options())
.set_(
td.storage(),
/* storage_offset = */ 0,
/* size = */
{static_cast<int64_t>(
td.storage().nbytes() / td.element_size())},
/* stride = */ {1})
.cpu();
}
fbb.ForceVectorAlignment(
td.storage().nbytes(), sizeof(uint8_t), FLATBUFFERS_MAX_ALIGNMENT);
auto storage_offset = mobile::serialization::CreateStorageData(
fbb,
fbb.CreateVector(
reinterpret_cast<const uint8_t*>(td.storage().data()),
td.storage().nbytes()));
storage_data.push_back(storage_offset);
}
storage_data_offset = fbb.CreateVector(storage_data);
}
auto mod = CreateModule(
fbb,
/*bytecode_version=*/bytecode_version,
extra_files_offset, /* extra_files */
functions_offset,
ivalue_index,
fbb.CreateVector(ivalue_offsets_),
tensor_data_.size(),
storage_data_offset,
fbb.CreateVector(obj_types_offset_),
jit_source_offset,
fbb.CreateVector(jit_constants_indexes),
operator_version,
mobile_ivalue_size);
FinishModuleBuffer(fbb, mod);
return fbb.Release();
}
flatbuffers::Offset<mobile::serialization::Tuple> FlatbufferSerializer::
tupleToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& tuple) {
const auto& elements = tuple.toTuple()->elements();
std::vector<uint32_t> items =
storeIValuesAndGetIndexes(fbb, elements.begin(), elements.end());
return CreateTupleDirect(fbb, &items);
}
flatbuffers::Offset<mobile::serialization::List> FlatbufferSerializer::listToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& list) {
const auto& elements = list.toList();
std::vector<uint32_t> items =
storeIValuesAndGetIndexes(fbb, elements.begin(), elements.end());
return CreateList(
fbb,
fbb.CreateVector(items),
fbb.CreateSharedString(
realType(list.type<c10::Type>())->annotation_str(print_type)));
}
flatbuffers::Offset<mobile::serialization::Dict> FlatbufferSerializer::dictToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
const auto& dict = ivalue.toGenericDict();
std::vector<uint32_t> keys;
std::vector<uint32_t> values;
keys.reserve(dict.size());
values.reserve(dict.size());
for (const auto& entry : dict) {
int key_index = storeIValueAndGetIndex(fbb, entry.key());
keys.push_back(key_index);
int value_index = storeIValueAndGetIndex(fbb, entry.value());
values.push_back(value_index);
}
return CreateDict(
fbb,
fbb.CreateVector(keys),
fbb.CreateVector(values),
fbb.CreateSharedString(
realType(ivalue.type<c10::Type>())->annotation_str(print_type)));
}
flatbuffers::Offset<mobile::serialization::ObjectType> FlatbufferSerializer::
classTypeToFB(FlatBufferBuilder& fbb, ClassTypePtr class_ptr) {
mobile::serialization::TypeType typetype =
mobile::serialization::TypeType::UNSET;
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<flatbuffers::String>>>
names_offset = 0;
c10::QualifiedName setstate_name(*class_ptr->name(), "__setstate__");
c10::QualifiedName getstate_name(*class_ptr->name(), "__getstate__");
const mobile::Function* setstate = mcu_->find_function(setstate_name);
const mobile::Function* getstate = mcu_->find_function(getstate_name);
if (setstate != nullptr && getstate != nullptr) {
typetype = mobile::serialization::TypeType::CLASS_WITH_SETSTATE;
} else if (
class_ptr->findMethod("__setstate__") &&
class_ptr->findMethod("__getstate__")) {
typetype = mobile::serialization::TypeType::CUSTOM_CLASS;
} else {
size_t num_attr = class_ptr->numAttributes();
std::vector<flatbuffers::Offset<flatbuffers::String>> names;
std::vector<uint32_t> type_index;
for (size_t i = 0; i < num_attr; ++i) {
names.push_back(fbb.CreateSharedString(class_ptr->getAttributeName(i)));
}
names_offset = fbb.CreateVector(names);
typetype = mobile::serialization::TypeType::CLASS_WITH_FIELD;
}
auto name_offset = fbb.CreateString(class_ptr->name()->qualifiedName());
return CreateObjectType(fbb, name_offset, typetype, names_offset);
}
uint32_t FlatbufferSerializer::storeFunctionAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const std::string& qn,
const mobile::Function& function) {
auto iter = qn_to_serialized_values_.find(qn);
if (iter != qn_to_serialized_values_.end()) {
return iter->second;
}
auto offset = CreateIValue(
fbb,
mobile::serialization::IValueUnion::Function,
functionToFB(fbb, qn, function).Union());
uint32_t index = insertIValue(offset);
qn_to_serialized_values_[qn] = index;
return index;
}
uint32_t FlatbufferSerializer::storeClassTypeAndGetIndex(
FlatBufferBuilder& fbb,
ClassTypePtr class_ptr) {
const auto& type_str = class_ptr->name()->qualifiedName();
auto iter = qn_to_serialized_values_.find(type_str);
if (iter != qn_to_serialized_values_.end()) {
return iter->second;
}
auto offset = classTypeToFB(fbb, class_ptr);
uint32_t res = obj_types_offset_.size();
obj_types_offset_.push_back(offset);
qn_to_serialized_values_[type_str] = res;
return res;
}
flatbuffers::Offset<mobile::serialization::Object> FlatbufferSerializer::
objectToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& ivalue) {
auto obj = ivalue.toObject();
auto type = obj->type();
// rename type?
// check getstate
// save state as ivalue
flatbuffers::Offset<flatbuffers::Vector<uint32_t>> attrs = 0;
uint32_t state_index = 0;
uint32_t setstate_func_index = 0;
const auto qn = type->name()->qualifiedName() + ".__setstate__";
auto getstate = type->findMethod("__getstate__");
auto setstate = type->findMethod("__setstate__");
if (getstate && setstate) {
auto state = (*getstate)({obj});
state_index = storeIValueAndGetIndex(fbb, state);
auto func_index = qn_to_serialized_values_.find(qn);
if (func_index != qn_to_serialized_values_.end()) {
setstate_func_index = func_index->second;
}
} else {
size_t num_attr = type->numAttributes();
std::vector<uint32_t> tuple_index;
for (size_t i = 0; i < num_attr; ++i) {
tuple_index.push_back(storeIValueAndGetIndex(fbb, obj->getSlot(i)));
}
attrs = fbb.CreateVector(tuple_index);
}
uint32_t type_index = storeClassTypeAndGetIndex(fbb, type);
return CreateObject(fbb, type_index, state_index, attrs, setstate_func_index);
}
flatbuffers::Offset<mobile::serialization::TensorMetadata> FlatbufferSerializer::
FlatbufferSerializer::tensorToFB(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
auto& tensor = ivalue.toTensor();
bool quantized = tensor.is_quantized();
const at::Storage& storage = tensor.storage();
flatbuffers::Offset<mobile::serialization::QuantizedSchema> qschema_offset =
0;
if (quantized) {
double scale = 0;
int32_t zero_point = 0;
flatbuffers::Offset<mobile::serialization::TensorMetadata> scales = 0;
flatbuffers::Offset<mobile::serialization::TensorMetadata> zero_points = 0;
int32_t axis = 0;
switch (tensor.qscheme()) {
case at::kPerTensorAffine:
scale = tensor.q_scale();
zero_point = tensor.q_zero_point();
break;
case at::kPerChannelAffineFloatQParams:
case at::kPerChannelAffine: {
scales = tensorToFB(fbb, tensor.q_per_channel_scales());
zero_points = tensorToFB(fbb, tensor.q_per_channel_zero_points());
axis = tensor.q_per_channel_axis();
} break;
default:
TORCH_CHECK(
false,
"Unsupported tensor quantization type in serialization ",
toString(tensor.qscheme()));
break;
}
qschema_offset = mobile::serialization::CreateQuantizedSchema(
fbb,
static_cast<int8_t>(tensor.qscheme()),
scale,
zero_point,
scales,
zero_points,
axis);
}
void* addr = storage.unsafeGetStorageImpl();
uint32_t storage_index = 0;
auto it = memoized_storage_map_.find(addr);
if (it != memoized_storage_map_.end()) {
storage_index = it->second;
} else {
storage_index = tensor_data_.size();
memoized_storage_map_[addr] = storage_index;
tensor_data_.push_back(tensor);
}
std::vector<int> sizes{tensor.sizes().begin(), tensor.sizes().end()};
std::vector<int> strides{tensor.strides().begin(), tensor.strides().end()};
return CreateTensorMetadataDirect(
fbb,
/* storage_location_index */ storage_index,
/* scalar_type */ static_cast<int8_t>(tensor.scalar_type()),
/* int32_t storage_offset */ tensor.storage_offset(),
/* sizes */ &sizes,
/* strides */ &strides,
/* bool requires_grad */ tensor.requires_grad(),
/* qschema */ qschema_offset);
}
uint32_t FlatbufferSerializer::storeIValueAndGetIndex(
flatbuffers::FlatBufferBuilder& fbb,
const IValue& ivalue) {
if (ivalue.isNone()) {
return kNoneIndex;
}
try {
auto iter = cached_ivalues_.find(ivalue);
if (iter != cached_ivalues_.end()) {
return iter->second;
}
} catch (const std::runtime_error&) {
// Threw if ivalue is not hashable
} catch (const c10::Error&) {
// Threw if ivalue is don't have proper operator==
}
auto offset = iValueToFB(fbb, ivalue);
uint32_t index = insertIValue(offset);
try {
cached_ivalues_[ivalue] = index;
} catch (const std::runtime_error&) {
} catch (const c10::Error&) {
}
return index;
}
flatbuffers::Offset<mobile::serialization::IValue> FlatbufferSerializer::
iValueToFB(flatbuffers::FlatBufferBuilder& fbb, const IValue& ivalue) {
using mobile::serialization::IValueUnion;
IValueUnion ivalue_type = IValueUnion::NONE;
flatbuffers::Offset<void> offset = 0;
if (ivalue.isTensor()) {
ivalue_type = IValueUnion::TensorMetadata;
offset = tensorToFB(fbb, ivalue).Union();
} else if (ivalue.isTuple()) {
ivalue_type = IValueUnion::Tuple;
offset = tupleToFB(fbb, ivalue).Union();
} else if (ivalue.isDouble()) {
ivalue_type = IValueUnion::Double;
offset = fbb.CreateStruct(mobile::serialization::Double(ivalue.toDouble()))
.Union();
} else if (ivalue.isComplexDouble()) {
auto comp = ivalue.toComplexDouble();
ivalue_type = IValueUnion::ComplexDouble;
offset = fbb.CreateStruct(mobile::serialization::ComplexDouble(
comp.real(), comp.imag()))
.Union();
} else if (ivalue.isInt()) {
ivalue_type = IValueUnion::Int;
offset =
fbb.CreateStruct(mobile::serialization::Int(ivalue.toInt())).Union();
} else if (ivalue.isBool()) {
ivalue_type = IValueUnion::Bool;
offset =
fbb.CreateStruct(mobile::serialization::Bool(ivalue.toBool())).Union();
} else if (ivalue.isString()) {
ivalue_type = IValueUnion::String;
offset = mobile::serialization::CreateString(
fbb, fbb.CreateSharedString(ivalue.toStringRef()))
.Union();
} else if (ivalue.isGenericDict()) {
ivalue_type = IValueUnion::Dict;
offset = dictToFB(fbb, ivalue).Union();
} else if (ivalue.isNone()) {
ivalue_type = IValueUnion::NONE;
offset = 0;
} else if (ivalue.isIntList()) {
ivalue_type = IValueUnion::IntList;
offset = mobile::serialization::CreateIntList(
fbb, fbb.CreateVector(ivalue.toIntVector()))
.Union();
} else if (ivalue.isDoubleList()) {
ivalue_type = IValueUnion::DoubleList;
offset = mobile::serialization::CreateDoubleList(
fbb, fbb.CreateVector(ivalue.toDoubleVector()))
.Union();
} else if (ivalue.isBoolList()) {
ivalue_type = IValueUnion::BoolList;
auto boollist = ivalue.toBoolList();
std::vector<uint8_t> bool_vec(boollist.begin(), boollist.end());
offset =
mobile::serialization::CreateBoolListDirect(fbb, &bool_vec).Union();
} else if (ivalue.isList()) {
ivalue_type = IValueUnion::List;
offset = listToFB(fbb, ivalue).Union();
} else if (ivalue.isObject()) {
ivalue_type = IValueUnion::Object;
offset = objectToFB(fbb, ivalue).Union();
} else if (ivalue.isDevice()) {
ivalue_type = IValueUnion::Device;
offset = mobile::serialization::CreateDevice(
fbb, fbb.CreateSharedString(ivalue.toDevice().str()))
.Union();
} else if (ivalue.isEnum()) {
const auto& enum_holder = ivalue.toEnumHolder();
const auto& qualified_class_name =
enum_holder->type()->qualifiedClassName();
uint32_t ival_pos = storeIValueAndGetIndex(fbb, enum_holder->value());
ivalue_type = IValueUnion::EnumValue;
offset = mobile::serialization::CreateEnumValue(
fbb,
fbb.CreateSharedString(qualified_class_name.qualifiedName()),
ival_pos)
.Union();
} else {
AT_ERROR("Invalid IValue type for serialization: ", ivalue.tagKind());
}
return CreateIValue(fbb, ivalue_type, offset);
}
} // namespace
void save_mobile_module(
const mobile::Module& module,
const std::string& filename,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
auto buffer = save_mobile_module_to_bytes(
module, extra_files, jit_sources, jit_constants);
std::fstream ofile(filename, std::ios::binary | std::ios::out);
ofile.write(
reinterpret_cast<char*>(buffer->data()),
static_cast<std::streamsize>(buffer->size()));
ofile.close();
}
/// Deletes a DetachedBuffer, along with the internal
/// flatbuffers::DetachedBuffer if present. Used as a custom deleter for
/// std::unique_ptr; see UniqueDetachedBuffer and make_unique_detached_buffer.
void DetachedBuffer::destroy(DetachedBuffer* buf) {
// May be null.
delete static_cast<flatbuffers::DetachedBuffer*>(buf->data_owner_);
delete buf;
}
/// Provides access to DetachedBuffer::destroy().
struct DetachedBufferFriend {
/// Returns a UniqueDetachedBuffer that wraps the provided DetachedBuffer.
static DetachedBuffer::UniqueDetachedBuffer make_unique_detached_buffer(
DetachedBuffer* buf) {
return DetachedBuffer::UniqueDetachedBuffer(buf, DetachedBuffer::destroy);
}
};
DetachedBuffer::UniqueDetachedBuffer save_mobile_module_to_bytes(
const mobile::Module& module,
const ExtraFilesMap& extra_files,
const ExtraFilesMap& jit_sources,
const std::vector<IValue>& jit_constants) {
FlatbufferSerializer fb_serializer;
flatbuffers::DetachedBuffer buf = fb_serializer.serializeModule(
module,
/*include_tensor_data_in_flatbuffer=*/true,
extra_files,
jit_sources,
jit_constants);
flatbuffers::DetachedBuffer* buf_ptr =
new flatbuffers::DetachedBuffer(std::move(buf));
DetachedBuffer* ret =
new DetachedBuffer(buf_ptr->data(), buf_ptr->size(), buf_ptr);
return DetachedBufferFriend::make_unique_detached_buffer(ret);
}
void save_mobile_module_to_func(
const mobile::Module& module,
const std::function<size_t(const void*, size_t)>& writer_func) {
auto buffer = save_mobile_module_to_bytes(module);
writer_func(buffer->data(), buffer->size());
}
bool register_flatbuffer_serializer() {
return true;
}
} // namespace torch::jit