forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
intersection.py
49 lines (43 loc) · 1.53 KB
/
intersection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import math
from typing import Callable
def intersection(function: Callable[[float], float], x0: float, x1: float) -> float:
"""
function is the f we want to find its root
x0 and x1 are two random starting points
>>> intersection(lambda x: x ** 3 - 1, -5, 5)
0.9999999999954654
>>> intersection(lambda x: x ** 3 - 1, 5, 5)
Traceback (most recent call last):
...
ZeroDivisionError: float division by zero, could not find root
>>> intersection(lambda x: x ** 3 - 1, 100, 200)
1.0000000000003888
>>> intersection(lambda x: x ** 2 - 4 * x + 3, 0, 2)
0.9999999998088019
>>> intersection(lambda x: x ** 2 - 4 * x + 3, 2, 4)
2.9999999998088023
>>> intersection(lambda x: x ** 2 - 4 * x + 3, 4, 1000)
3.0000000001786042
>>> intersection(math.sin, -math.pi, math.pi)
0.0
>>> intersection(math.cos, -math.pi, math.pi)
Traceback (most recent call last):
...
ZeroDivisionError: float division by zero, could not find root
"""
x_n: float = x0
x_n1: float = x1
while True:
if x_n == x_n1 or function(x_n1) == function(x_n):
raise ZeroDivisionError("float division by zero, could not find root")
x_n2: float = x_n1 - (
function(x_n1) / ((function(x_n1) - function(x_n)) / (x_n1 - x_n))
)
if abs(x_n2 - x_n1) < 10**-5:
return x_n2
x_n = x_n1
x_n1 = x_n2
def f(x: float) -> float:
return math.pow(x, 3) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))