-
Notifications
You must be signed in to change notification settings - Fork 28
/
setup.py
135 lines (107 loc) · 4.1 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
from setuptools import find_packages, setup
with open(os.path.join("stable_baselines3", "version.txt"), "r") as file_handler:
__version__ = file_handler.read().strip()
long_description = """
# Stable Baselines3
Stable Baselines3 is a set of improved implementations of reinforcement learning algorithms in PyTorch. It is the next major version of [Stable Baselines](https://github.com/hill-a/stable-baselines).
These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
## Links
Repository:
https://github.com/DLR-RM/stable-baselines3
Medium article:
https://medium.com/@araffin/df87c4b2fc82
Documentation:
https://stable-baselines3.readthedocs.io/en/master/
RL Baselines3 Zoo:
https://github.com/DLR-RM/rl-baselines3-zoo
## Quick example
Most of the library tries to follow a sklearn-like syntax for the Reinforcement Learning algorithms using Gym.
Here is a quick example of how to train and run PPO on a cartpole environment:
```python
import gym
from stable_baselines3 import PPO
env = gym.make('CartPole-v1')
model = PPO('MlpPolicy', env, verbose=1)
model.learn(total_timesteps=10000)
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
if done:
obs = env.reset()
```
Or just train a model with a one liner if [the environment is registered in Gym](https://github.com/openai/gym/wiki/Environments) and if [the policy is registered](https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html):
```python
from stable_baselines3 import PPO
model = PPO('MlpPolicy', 'CartPole-v1').learn(10000)
```
""" # noqa:E501
setup(
name="stable_baselines3",
packages=[package for package in find_packages() if package.startswith("stable_baselines3")],
package_data={"stable_baselines3": ["py.typed", "version.txt"]},
install_requires=[
"gym>=0.17",
"numpy",
"torch>=1.4.0",
# For saving models
"cloudpickle",
# For reading logs
"pandas",
# Plotting learning curves
"matplotlib",
],
extras_require={
"tests": [
# Run tests and coverage
"pytest",
"pytest-cov",
"pytest-env",
"pytest-xdist",
# Type check
"pytype",
# Lint code
"flake8>=3.8",
# Sort imports
"isort>=5.0",
# Reformat
"black",
],
"docs": [
"sphinx",
"sphinx-autobuild",
"sphinx-rtd-theme",
# For spelling
"sphinxcontrib.spelling",
# Type hints support
"sphinx-autodoc-typehints",
],
"extra": [
# For render
"opencv-python",
# For atari games,
"atari_py~=0.2.0",
"pillow",
# Tensorboard support
"tensorboard",
# Checking memory taken by replay buffer
"psutil",
],
},
description="Pytorch version of Stable Baselines, implementations of reinforcement learning algorithms.",
author="Antonin Raffin",
url="https://github.com/DLR-RM/stable-baselines3",
author_email="[email protected]",
keywords="reinforcement-learning-algorithms reinforcement-learning machine-learning "
"gym openai stable baselines toolbox python data-science",
license="MIT",
long_description=long_description,
long_description_content_type="text/markdown",
version=__version__,
)
# python setup.py sdist
# python setup.py bdist_wheel
# twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# twine upload dist/*